题面

Description

很久很久以前,有一只神犇叫yzy;

很久很久之后,有一只蒟蒻叫lty;

Input

请你读入一个整数N;\(1<=N<=10^9\),A、B模\(10^9+7​\);

Output

请你输出一个整数\(A=\sum_{i=1}^N{\mu (i^2)}\);

请你输出一个整数\(B=\sum_{i=1}^N{\varphi (i^2)}\);

Sample Input

1

Sample Output

1

1\

题目分析

第一问:

根据定义,答案永远等于\(1\)。


第二问:

首先,显然有\(\varphi(i^2)=i\cdot\varphi(i)\)。

根据杜教筛的套路式:

\[g(1)S(n)=\sum_{i=1}^n(g*f)(i)-\sum_{i=2}^ng(i)S(\frac ni)
\]

通过(我也不知道怎么出来的)分析可得,令\(g(x)=x\):

\[\begin{split}
(f*g)(i)&=\sum_{d|i}\varphi(d)\cdot d\cdot \frac{i}{d}\\
&=\sum_{d|i}\varphi(d)\cdot i\\
&=i\sum_{d|i}\varphi(d)\\
&=i^2
\end{split}
\]

如此一来:

\[\sum_{i=1}^n(g*f)(i)=1^2+2^2+...+n^2=\frac{n\cdot (n+1)\cdot (2\cdot n+1)}6
\]

代回套路式可得:

\[S(n)=\frac{n\cdot (n+1)\cdot (2\cdot n+1)}6-\sum_{i=2}^ni\cdot S(\frac ni)
\]

现在,这个式子就可以用杜教筛解决了。

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<map>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=3e6+5,M=N-5;
const int mod=1e9+7,inv6=166666668;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int prime[N],phi[N];
bool vis[N];
map<int,int>sphi;
int Sphi(int x){
if(x<=M)return phi[x];
if(sphi[x])return sphi[x];
int ret=1ll*x*(x+1)%mod*(2*x+1)%mod*inv6%mod;
for(int l=2,r=0;r!=x;l=r+1){
r=x/(x/l);
ret=(ret-1ll*(l+r)*(r-l+1)/2%mod*Sphi(x/l)%mod)%mod;
}
return sphi[x]=(ret+mod)%mod;
}
int main(){
phi[1]=1;
for(int i=2;i<=M;i++){
if(!vis[i])prime[++prime[0]]=i,phi[i]=i-1;
for(int j=1;j<=prime[0]&&1ll*i*prime[j]<=M;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
for(int i=1;i<=M;i++)phi[i]=(1ll*phi[i]*i+phi[i-1])%mod;
int n=Getint();
cout<<1<<'\n'<<Sphi(n);
return 0;
}

【BZOJ4916】神犇与蒟蒻的更多相关文章

  1. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  2. BZOJ4916: 神犇和蒟蒻【杜教筛】

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  3. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  4. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  5. Bzoj4916: 神犇和蒟蒻

    题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...

  6. BZOJ4916: 神犇和蒟蒻(杜教筛)

    题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...

  7. [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛

    题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...

  8. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  9. 【BZOJ4916】神犇和蒟蒻 解题报告

    [BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...

随机推荐

  1. 如何用DOS命令查看占用某端口的程序及PID号

    果学过JSP编程的朋友可以会发现,若用Eclipse运行JSP文件时常常会弹出某某端口正在使用,从而导致代码无法运行.如何查找出特定端口的使用情况以及对应的程序呢,针对该问题,本文介绍利用DOS命令查 ...

  2. LeetCode 852. Peak Index in a Mountain Array (山脉数组的峰顶索引)

    题目标签:Binary Search 题目给了我们一组 int array,让我们找到数组的 peak. 利用 binary search, 如果数字比它后面那个数字小,说明还在上坡,缩小范围到右半边 ...

  3. LeetCode 182. Duplicate Emails (查找重复的电子邮箱)

    题目标签: 题目给了我们一个 email 的table,让我们找到重复的 email. 可以建立 Person a, Person b, 找到两个表格中,emai 相等 但是 id 不同的 email ...

  4. (转)HashSet<T>类

    转载于:http://www.importnew.com/6931.html HashSet<T>类主要是设计用来做高性能集运算的,例如对两个集合求交集.并集.差集等.集合中包含一组不重复 ...

  5. 20140307 引用赋值、类的初始化、指针数组、数组指针、new

    引用不能被赋值http://blog.csdn.net/laixingjun/article/details/9005200 类构造函数两种初始化方法区别,哪种好:http://blog.163.co ...

  6. python调用tushare获取沪股通、深股通成份股数据

    接口:hs_const 描述:获取沪股通.深股通成分数据 注:tushare库下载和初始化教程,请查阅我之前的文章 输入参数 名称      |      类型      |      必选      ...

  7. NuGet包介绍

    Antlr 各种语言的语法识别器.解析器.编译和翻译器 Microsoft.AspNet.Web.Optimization 绑定优化CSS和JavaScript文件,也就是App_Start下的Bun ...

  8. Nginx安装及分流多个web服务

    Ngnix安装及常用配置 一.安装Nginx 1.检查依赖 yum install gcc-c++ yum install -y pcre pcre-devel yum install -y zlib ...

  9. K8S之集群搭建

    转自声明 ASP.NET Core on K8S深入学习(1)K8S基础知识与集群搭建 1.K8S环境搭建的几种方式 搭建K8S环境有几种常见的方式如下: (1)Minikube Minikube是一 ...

  10. 检测到“RuntimeLibrary”的不匹配项