题面

Description

很久很久以前,有一只神犇叫yzy;

很久很久之后,有一只蒟蒻叫lty;

Input

请你读入一个整数N;\(1<=N<=10^9\),A、B模\(10^9+7​\);

Output

请你输出一个整数\(A=\sum_{i=1}^N{\mu (i^2)}\);

请你输出一个整数\(B=\sum_{i=1}^N{\varphi (i^2)}\);

Sample Input

1

Sample Output

1

1\

题目分析

第一问:

根据定义,答案永远等于\(1\)。


第二问:

首先,显然有\(\varphi(i^2)=i\cdot\varphi(i)\)。

根据杜教筛的套路式:

\[g(1)S(n)=\sum_{i=1}^n(g*f)(i)-\sum_{i=2}^ng(i)S(\frac ni)
\]

通过(我也不知道怎么出来的)分析可得,令\(g(x)=x\):

\[\begin{split}
(f*g)(i)&=\sum_{d|i}\varphi(d)\cdot d\cdot \frac{i}{d}\\
&=\sum_{d|i}\varphi(d)\cdot i\\
&=i\sum_{d|i}\varphi(d)\\
&=i^2
\end{split}
\]

如此一来:

\[\sum_{i=1}^n(g*f)(i)=1^2+2^2+...+n^2=\frac{n\cdot (n+1)\cdot (2\cdot n+1)}6
\]

代回套路式可得:

\[S(n)=\frac{n\cdot (n+1)\cdot (2\cdot n+1)}6-\sum_{i=2}^ni\cdot S(\frac ni)
\]

现在,这个式子就可以用杜教筛解决了。

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<map>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=3e6+5,M=N-5;
const int mod=1e9+7,inv6=166666668;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int prime[N],phi[N];
bool vis[N];
map<int,int>sphi;
int Sphi(int x){
if(x<=M)return phi[x];
if(sphi[x])return sphi[x];
int ret=1ll*x*(x+1)%mod*(2*x+1)%mod*inv6%mod;
for(int l=2,r=0;r!=x;l=r+1){
r=x/(x/l);
ret=(ret-1ll*(l+r)*(r-l+1)/2%mod*Sphi(x/l)%mod)%mod;
}
return sphi[x]=(ret+mod)%mod;
}
int main(){
phi[1]=1;
for(int i=2;i<=M;i++){
if(!vis[i])prime[++prime[0]]=i,phi[i]=i-1;
for(int j=1;j<=prime[0]&&1ll*i*prime[j]<=M;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
for(int i=1;i<=M;i++)phi[i]=(1ll*phi[i]*i+phi[i-1])%mod;
int n=Getint();
cout<<1<<'\n'<<Sphi(n);
return 0;
}

【BZOJ4916】神犇与蒟蒻的更多相关文章

  1. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  2. BZOJ4916: 神犇和蒟蒻【杜教筛】

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  3. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  4. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  5. Bzoj4916: 神犇和蒟蒻

    题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...

  6. BZOJ4916: 神犇和蒟蒻(杜教筛)

    题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...

  7. [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛

    题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...

  8. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  9. 【BZOJ4916】神犇和蒟蒻 解题报告

    [BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...

随机推荐

  1. 11.RabbitMQ单机集群

    RabbitMQ集群设计用于完成两个目标:允许消费者和生产者在RabbitMQ节点崩溃的情况下继续运行,以及通过添加更多的节点来扩展消息通信的吞吐量. RabbitMQ会始终记录以下四种类型的内部元数 ...

  2. PMP项目管理——项目范围管理-规划范围管理

    规划范围管理是为记录如何定义.确认和控制项目范围及产品范围,而创建范围管理计划的过程.主要作用是,在整个项目期间对如何管理范围提供指南和方向.制定范围管理计划和细化项目范围始于对下列信息的分析:项目章 ...

  3. 转-C/C++ new与malloc区别

    1.属性 new/delete是C++关键字,需要编译器支持.malloc/free是库函数,需要头文件支持. 2.参数 使用new操作符申请内存分配时无须指定内存块的大小,编译器会根据类型信息自行计 ...

  4. class3_Entry & Text 输入和文本框

    程序总体运行效果图如下;   #!/usr/bin/env python # -*- coding:utf-8 -*- # -------------------------------------- ...

  5. python 17 异常

    自 http://www.cnblogs.com/BeginMan/p/3171445.html 一.什么是错误,什么是异常,它们两者区别 这里解释如下:个人觉得很通俗易懂 错误是指在执行代码过程中发 ...

  6. 【牛客提高训练营5B】旅游

    题目 吉老师的题时过一年还是不会做 从\(1\)号点出发经过每条边至少一次并且还要回到\(1\)号点,这跟欧拉回路的条件非常像,但是欧拉回路的实际上是"经过每一条边恰好一次并且回到出发点&q ...

  7. 织梦自增函数[field:global name=autoindex/]常见用法

    看来不少朋友需要不了解这个自增函数的用法,在这里我列举一些常见的写法以及作用.   [field:global name=autoindex/] !--普通打印递增的数字-- [field:globa ...

  8. NFS服务器简易安装

    1.服务端 创建挂载目录 # mkdir /data/nfs 安装NFS软件 # yum install nfs-utils -y 添加配置信息 # vim /etc/exports /data/nf ...

  9. Js_案例(电灯)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. 【学术篇】NOIP2017 d2t3 列队phalanx splay做法

    我可去他的吧.... ==============先胡扯些什么的分割线================== 一道NOIP题我调了一晚上...(其实是因为昨晚没有找到调试的好方法来的说...) 曾经我以 ...