参考资料:
吴恩达教授机器学习课程
机器学习课程中文笔记

Week2

一. 多变量线性回归(Linear Regression with Multiple Variables)

多变量就时当一个example里有n个特征的情况,将n个特征统一到一个matrix里去看作整体。
多变量线性回归还是先出cost function,然后用梯度下降算法/正规方程法使cost function最小化

特征的选择

多变量线性回归中有很多特征,选择合适的特征很重要,下面是常见的可用特征:

  1. training set中原始特征中选择合适的
  2. 由多个特征合成的一个新特征(例如:长度*宽度=面积,面积作为新特征)

  3. 运算后的特征,如x: x2,x1/2

特征缩放 feature scaling

面对多维特征问题的时候,在对代价函数使用梯度下降算法前要对特征进行一些处理。保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。

将training set中的同一特征值进行scaling处理,用下面公式:(x-平均值)/(最大值-最小值)范围 可以将所有的这一特征值控制在-0.5<=x<=0.5,方便进行梯度下降

学习率的选择

梯度下降算法的每次迭代受到学习率的影响,如果学习率过小,则达到收敛所需的迭代次数会非常高;如果学习率过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。

通常可以考虑尝试些学习率:0.01,0.03,0.1,0.3,1,3

正规方程

将cost function最小化除了用梯度下降还可以用正规方程。正规方程法不需要学习率,不需要特征缩放,可以直接一次计算出:

只要特征变量的数目并不大,标准方程是一个很好的计算参数的替代方法。具体地说,只要特征变量数量小于一万,我通常使用标准方程法,而不使用梯度下降法。

注意:有些时候对于某些模型不能使用正规方程而只能用梯度下降。

Coursera-吴恩达机器学习课程笔记-Week2的更多相关文章

  1. ML:吴恩达 机器学习 课程笔记(Week1~2)

    吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Reg ...

  2. Coursera 吴恩达 机器学习 学习笔记

    Week 1 机器学习笔记(一)基本概念与单变量线性回归 Week 2   机器学习笔记(二)多元线性回归 机器学习作业(一)线性回归——Matlab实现 机器学习作业(一)线性回归——Python( ...

  3. ML:吴恩达 机器学习 课程笔记(Week7~8)

    Support Vector Machines Unsupervised Learning Dimensionality Reduction

  4. ML:吴恩达 机器学习 课程笔记(Week5~6)

    Neural Networks: Learning Advice for Applying Machine Learning Machine Learning System Design

  5. ML:吴恩达 机器学习 课程笔记(Week9~10)

    Anomaly Detection Recommender Systems Large Scale Machine Learning

  6. ML:吴恩达 机器学习 课程笔记(Week3~4)

    Logistic Regression Regularization Neural Networks: Representation

  7. Coursera-吴恩达机器学习课程笔记-Week1

    参考资料: 吴恩达教授机器学习课程 机器学习课程中文笔记 Week 1 一. 引言 机器学习模型可分为监督学习Superviese learning(每个数据集给出了正确的值)和无监督学习Unsupe ...

  8. Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记

    Week1: Machine Learning: A computer program is said to learn from experience E with respect to some ...

  9. Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记(完结)

    Week 1: Machine Learning: A computer program is said to learn from experience E with respect to some ...

随机推荐

  1. python面试的100题(20)

    76.递归函数停止的条件? 递归的终止条件一般定义在递归函数内部,在递归调用前要做一个条件判断,根据判断的结果选择是继续调用自身,还是return:返回终止递归.终止的条件:1.判断递归的次数是否达到 ...

  2. day30 NFS服务器概述

    02. NFS存储服务概念介绍 NFS是Network File System的缩写,中文意思是网络文件共享系统, 它的主要功能是通过网络(一般是局域网)让不同的主机系统之间可以共享文件或目录 存储服 ...

  3. 用户登录(php)

    <!DOCTYPE HTML><html><head><meta charset="utf-8"><script type=& ...

  4. [CCPC2019秦皇岛] F. Forest Program

    [CCPC2019秦皇岛 F] Link https://codeforces.com/gym/102361/problem/F Description 给定一个仙人掌,删去一些边可以让它变成一个森林 ...

  5. Oracle Linux安装

    注:Oracle11gR2 X64安装 一.环境准备 安装包: 2.CentOS-7-x86_64-DVD-1511.iso 3.linux.x64_11gR2_database_1of2.zip l ...

  6. LocalDate和LocalTime的用法介绍

    原文:LocalDate和LocalTime的用法介绍 在JAVA中,常用的处理日期和时间的类主要有Date,Calendar,而在JDK1.8中,新增了两个处理日期和时间的类,一个是LocalDat ...

  7. dp--C - Mysterious Present

    C - Mysterious Present Peter decided to wish happy birthday to his friend from Australia and send hi ...

  8. 2.springboot------微服务

    什么是微服务? 微服务是一种架构风格,它要求我们在开发一个应用的时候,这个应用必须构建成一系列小服务的组合:可以通过http的方式进行互通.要说微服务架构,先得说说过去我们的单体应用架构. 单体应用架 ...

  9. 问题 D: 家庭问题

    问题 D: 家庭问题 时间限制: 1 Sec  内存限制: 128 MB[命题人:admin] 题目描述 有n个人,编号为1,2,……n,另外还知道存在K个关系.一个关系的表达为二元组(α,β)形式, ...

  10. php curl请求 header头携带参数

    $headers = array(    'api-key:'.$key,    'authorization:'.$authorization,      ); //初始化    $curl = c ...