深度学习——GAN
整理自:
https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1
- 思想
- 表达式
- 实际计算方法
- 改进
- WGAN
1.思想
GAN结合了生成模型和判别模型,相当于矛与盾的撞击。生成模型负责生成最好的数据骗过判别模型,而判别模型负责识别出哪些是真的哪些是生成模型生成的。但是这些只是在了解了GAN之后才体会到的,但是为什么这样会有效呢?
假设我们有分布Pdata(x),我们希望能建立一个生成模型来模拟真实的数据分布,假设生成模型为Pg(x;θ),我们的目的是求解θθ的值,通常我们都是用最大似然估计。但是现在的问题是由于我们相用NN来模拟Pdata(x),但是我们很难求解似然函数,因为我们没办法写出生成模型的具体表达形式,于是才有了GAN,也就是用判别模型来代替求解最大似然的过程。
在最理想的状态下,G可以生成足以“以假乱真”的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,因此D(G(z)) = 0.5。这样我们的目的就达成了:我们得到了一个生成式的模型G,它可以用来生成图片。
2.表达式
3.实际计算方法
因为我们不可能有Pdata(x)的分布,所以我们实际中都是用采样的方式来计算差异(也就是积分变求和)。具体实现过程如下:
有几个关键点:判别方程训练K次,而生成模型只需要每次迭代训练一次,先最大化(梯度上升)再最小化(梯度下降)。
但是实际计算时V的后面一项在D(x)很小的情况下由于log函数的原因会导致更新很慢,所以实际中通常将后一项的log(1-D(x))变为-logD(x)。
实际计算的时候还发现不论生成器设计的多好,判别器总是能判断出真假,也就是loss几乎都是0,这可能是因为抽样造成的,生成数据与真实数据的交集过小,无论生成模型多好,判别模型也能分辨出来。解决方法有两个:1、用WGAN 2、引入随时间减少的噪声
4.改进
对GAN有一些改进有引入f-divergence,取代Jensen-Shannon divergence,还有很多,这里主要介绍WGAN
5.WGAN
上面说过了用f-divergence来衡量两个分布的差异,而WGAN的思路是使用Earth Mover distance (挖掘机距离 Wasserstein distance)。
深度学习——GAN的更多相关文章
- 深度学习--GAN学习笔记
生成模型 WGAN Blog GAN 推荐学习网站 生成模型 什么是生成模型? GMM: 用来做聚类,(非监督学习) NB(朴素贝叶斯):(监督学习,可以用来做垃圾邮件分类) Logistics 回归 ...
- 深度学习之 GAN 进行 mnist 图片的生成
深度学习之 GAN 进行 mnist 图片的生成 mport numpy as np import os import codecs import torch from PIL import Imag ...
- 【深度学习】--GAN从入门到初始
一.前述 GAN,生成对抗网络,在2016年基本火爆深度学习,所有有必要学习一下.生成对抗网络直观的应用可以帮我们生成数据,图片. 二.具体 1.生活案例 比如假设真钱 r 坏人定义为G 我们通过 ...
- 深度学习新星:GAN的基本原理、应用和走向
深度学习新星:GAN的基本原理.应用和走向 (本文转自雷锋网,转载已获取授权,未经允许禁止转载)原文链接:http://www.leiphone.com/news/201701/Kq6FvnjgbKK ...
- 深度学习课程笔记(八)GAN 公式推导
深度学习课程笔记(八)GAN 公式推导 2018-07-10 16:15:07
- (转)能根据文字生成图片的 GAN,深度学习领域的又一新星
本文转自:https://mp.weixin.qq.com/s?__biz=MzIwMTgwNjgyOQ==&mid=2247484846&idx=1&sn=c2333a998 ...
- 在浏览器中进行深度学习:TensorFlow.js (八)生成对抗网络 (GAN
Generative Adversarial Network 是深度学习中非常有趣的一种方法.GAN最早源自Ian Goodfellow的这篇论文.LeCun对GAN给出了极高的评价: “There ...
- 深度学习-Wasserstein GAN论文理解笔记
GAN存在问题 训练困难,G和D多次尝试没有稳定性,Loss无法知道能否优化,生成样本单一,改进方案靠暴力尝试 WGAN GAN的Loss函数选择不合适,使模型容易面临梯度消失,梯度不稳定,优化目标不 ...
- 从零开始学会GAN 0:第一部分 介绍生成式深度学习(连载中)
本书的前四章旨在介绍开始构建生成式深度学习模型所需的核心技术.在第1章中,我们将首先对生成式建模领域进行广泛的研究,并从概率的角度考虑我们试图解决的问题类型.然后,我们将探讨我们的基本概率生成模型的第 ...
随机推荐
- 【JZOJ4742】【NOIP2016提高A组模拟9.2】单峰
题目描述 输入 输出 样例输入 2 样例输出 2 数据范围 解法 答案为2^(n-1),快速幂即可. 证明:显然峰值必定为n,那么对于其他n-1个数,要么放在峰值的左边,要么放在峰值的右边,所以方案数 ...
- nodeJs学习-16 数据字典示例
1.banner ID title 标题 varchar(32) sub_title 副标题 varchar(16) src 图片地址 varchar(64) 2.文章 ID author 作者 va ...
- [转]overflow:hidden真的失效了吗
项目中常常有同学遇到这样的问题,现象是给元素设置了overflow:hidden,但超出容器的部分并没有被隐藏,难道是设置的hidden失效了吗?其实看似不合理的现象背后都会有其合理的解释. 我们知道 ...
- 发布网站时 遇到XX类型 同时存在XX.dll和XX.dll中
遇到该问题的可能如下: 1.复制了页面 更改了名字 可是对应的一些地方没有注意 <%@ Page Language="C#" AutoEventWireup="tr ...
- 序列化类型为“System.Data.Entity.DynamicProxies..."对象时检测到循环引用
这是因为EF外键引起的序列化问题. 解决方案: context.Configuration.ProxyCreationEnabled = false; 这里我用的是一个基类控制器用于被继承 返回EF实 ...
- 【JZOJ4889】【NOIP2016提高A组集训第14场11.12】最长公共回文子序列
题目描述 YJC最近在学习字符串的有关知识.今天,他遇到了这么一个概念:最长公共回文子序列.一个序列S,如果S是回文的且分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...
- 网络请求之jsonp封装
首先介绍下jsonp原理 浏览器因为同源策略的限制,在不同源的服务器通过我们传统axios是不能直接用来请求数据的(忽略代理),而src标签则不受同源策略的影响,所以我们需要动态的创建带有src的标签 ...
- oracle访问Table的方式
ORACLE 采用两种访问表中记录的方式: a. 全表扫描 全表扫描就是顺序地访问表中每条记录. ORACLE采用一次读入多个数据块(database block)的方式优化全表扫描. b ...
- @atcoder - Japanese Student Championship 2019 Qualification - E@ Card Collector
目录 @description@ @solution@ @accepted code@ @details@ @description@ N 个卡片放在 H*W 的方格图上,第 i 张卡片的权值为 Ai ...
- Python 基础09 面向对象的进一步拓展
调用类的其他信息 上一讲中提到,在定义方法时,必须有self这一个参数,这个参数表示某个对象,对象有有类的所有性质, 那么我么可以通过self 调用类属性. class Human(object): ...