深度学习——GAN
整理自:
https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1
- 思想
- 表达式
- 实际计算方法
- 改进
- WGAN
1.思想
GAN结合了生成模型和判别模型,相当于矛与盾的撞击。生成模型负责生成最好的数据骗过判别模型,而判别模型负责识别出哪些是真的哪些是生成模型生成的。但是这些只是在了解了GAN之后才体会到的,但是为什么这样会有效呢?
假设我们有分布Pdata(x),我们希望能建立一个生成模型来模拟真实的数据分布,假设生成模型为Pg(x;θ),我们的目的是求解θθ的值,通常我们都是用最大似然估计。但是现在的问题是由于我们相用NN来模拟Pdata(x),但是我们很难求解似然函数,因为我们没办法写出生成模型的具体表达形式,于是才有了GAN,也就是用判别模型来代替求解最大似然的过程。
在最理想的状态下,G可以生成足以“以假乱真”的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,因此D(G(z)) = 0.5。这样我们的目的就达成了:我们得到了一个生成式的模型G,它可以用来生成图片。
2.表达式
3.实际计算方法
因为我们不可能有Pdata(x)的分布,所以我们实际中都是用采样的方式来计算差异(也就是积分变求和)。具体实现过程如下:
有几个关键点:判别方程训练K次,而生成模型只需要每次迭代训练一次,先最大化(梯度上升)再最小化(梯度下降)。
但是实际计算时V的后面一项在D(x)很小的情况下由于log函数的原因会导致更新很慢,所以实际中通常将后一项的log(1-D(x))变为-logD(x)。
实际计算的时候还发现不论生成器设计的多好,判别器总是能判断出真假,也就是loss几乎都是0,这可能是因为抽样造成的,生成数据与真实数据的交集过小,无论生成模型多好,判别模型也能分辨出来。解决方法有两个:1、用WGAN 2、引入随时间减少的噪声
4.改进
对GAN有一些改进有引入f-divergence,取代Jensen-Shannon divergence,还有很多,这里主要介绍WGAN
5.WGAN
上面说过了用f-divergence来衡量两个分布的差异,而WGAN的思路是使用Earth Mover distance (挖掘机距离 Wasserstein distance)。
深度学习——GAN的更多相关文章
- 深度学习--GAN学习笔记
生成模型 WGAN Blog GAN 推荐学习网站 生成模型 什么是生成模型? GMM: 用来做聚类,(非监督学习) NB(朴素贝叶斯):(监督学习,可以用来做垃圾邮件分类) Logistics 回归 ...
- 深度学习之 GAN 进行 mnist 图片的生成
深度学习之 GAN 进行 mnist 图片的生成 mport numpy as np import os import codecs import torch from PIL import Imag ...
- 【深度学习】--GAN从入门到初始
一.前述 GAN,生成对抗网络,在2016年基本火爆深度学习,所有有必要学习一下.生成对抗网络直观的应用可以帮我们生成数据,图片. 二.具体 1.生活案例 比如假设真钱 r 坏人定义为G 我们通过 ...
- 深度学习新星:GAN的基本原理、应用和走向
深度学习新星:GAN的基本原理.应用和走向 (本文转自雷锋网,转载已获取授权,未经允许禁止转载)原文链接:http://www.leiphone.com/news/201701/Kq6FvnjgbKK ...
- 深度学习课程笔记(八)GAN 公式推导
深度学习课程笔记(八)GAN 公式推导 2018-07-10 16:15:07
- (转)能根据文字生成图片的 GAN,深度学习领域的又一新星
本文转自:https://mp.weixin.qq.com/s?__biz=MzIwMTgwNjgyOQ==&mid=2247484846&idx=1&sn=c2333a998 ...
- 在浏览器中进行深度学习:TensorFlow.js (八)生成对抗网络 (GAN
Generative Adversarial Network 是深度学习中非常有趣的一种方法.GAN最早源自Ian Goodfellow的这篇论文.LeCun对GAN给出了极高的评价: “There ...
- 深度学习-Wasserstein GAN论文理解笔记
GAN存在问题 训练困难,G和D多次尝试没有稳定性,Loss无法知道能否优化,生成样本单一,改进方案靠暴力尝试 WGAN GAN的Loss函数选择不合适,使模型容易面临梯度消失,梯度不稳定,优化目标不 ...
- 从零开始学会GAN 0:第一部分 介绍生成式深度学习(连载中)
本书的前四章旨在介绍开始构建生成式深度学习模型所需的核心技术.在第1章中,我们将首先对生成式建模领域进行广泛的研究,并从概率的角度考虑我们试图解决的问题类型.然后,我们将探讨我们的基本概率生成模型的第 ...
随机推荐
- LintCode_69 二叉树前序遍历
题目 给出一棵二叉树,返回其节点值的前序遍历. 和中序遍历基本相同 C++代码 vector<int> preorderTraversal(TreeNode *root) { // wri ...
- kubernetes1.5新特性跟踪
Kubernetes发布历史回顾 Kubernetes 1.0 - 2015年7月发布 Kubernetes 1.1 - 2015年11月发布 Kubernetes 1.2 - 2016年3月发布 K ...
- win7 powershell版本过低问题
那台win8系统的笔记本电脑 硬盘坏掉后 在win7系统的台式机上使用 vagrant up 提示版本过低 The version of powershell currently installed ...
- 微信小程序组件——bindtap和catchtap的区别
了解知识点 DOM模型是一个树形结构,在DOM模型中,HTML元素是有层次的.当一个HTML元素上产生一个事件时,该事件会在DOM树中元素节点与根节点之间按特定的顺序传播,路径所经过的节点都会收到该事 ...
- JavaScript中操作数组的方法
JavaScript Array 对象 对数组操作的方法分为两种 一种是会改变原始数组的变异方法,还有一种是不会改变原始数组的非变异方法. 总结 巧记 Push() 尾部添加 pop() 尾部删除 U ...
- KiCad 5.1.0 镜像圆弧后错位问题
KiCad 5.1.0 镜像圆弧后错位问题 看官方回复这个问题将在 5.1.3 进行修复,因为这段时间在举行 KiCon 活动. 看到这个问题并不是非常严重,不是致命的,所以已经从 5.1.0 跳到 ...
- Maven command
mvn eclispe:clean mvn eclispe:eclispe mvn clean package mvn clean package -Dmaven.test.skip=true mvn ...
- 罗列Python标准模块
文本 1. string:通用字符串操作 2. re:正则表达式操作 3. difflib:差异计算工具 4. textwrap:文本填充 5. unicodedata:Unicode字符数据库 6. ...
- day5_python之subprocess模块
subprocess作用:用来执行系统命令它会开启一个子进程,通过子进程去执行一些命令 读取正确的命令执行结果,如果没有指定把结果输出到哪里,默认打印到屏幕上 #subprocess.Popen(r' ...
- HDU-6703-array-2019CCPC选拔赛
我TM真是一个弟弟... 题意: 给出一串1-N的数字 你每次可以把某个位置的值+1000000 或者找一个值,所有a[1]...a[r]序列的数都不能等于这个值,并且这个值>w 当时比赛觉得肯 ...