AtCoder Beginner Contest 154 题解
人生第一场 AtCoder,纪念一下
话说年后的 AtCoder 比赛怎么这么少啊(大雾
AtCoder Beginner Contest 154 题解
A - Remaining Balls
We have A balls with the string S written on each of them and B balls with the string T written on each of them.
From these balls, Takahashi chooses one with the string U written on it and throws it away.
Find the number of balls with the string S and balls with the string T that we have now.
Solution
#include <bits/stdc++.h>
using namespace std;
int a,b;
string s,t,u;
int main() {
cin>>s>>t>>a>>b>>u;
if(s==u) cout<<a-1<<" "<<b<<endl;
else cout<<a<<" "<<b-1<<endl;
}
B - I miss you...
Given is a string S. Replace every character in S with x and print the result.
Solution
算一下字符串长度即可,理论上按char
读进来逐个输出应该更短
#include <bits/stdc++.h>
using namespace std;
string s;
int main() {
cin>>s;
for(int i=0;i<s.length();i++) cout<<"x";
}
C - Distinct or Not
Given is a sequence of integers \(A_1, A_2, ..., A_N\). If its elements are pairwise distinct, print YES
; otherwise, print NO
.
Solution
排序应该是比较优雅的方法吧,虽然感觉 std::map
会更短
不对,这 \(1024MB\)的内存,是不是暴力开桶不用压位都能过
#include <bits/stdc++.h>
using namespace std;
int a[200005],n;
int main() {
ios::sync_with_stdio(false);
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
sort(a+1,a+n+1);
for(int i=1;i<n;i++) {
if(a[i]==a[i+1]) {
cout<<"NO"<<endl;
return 0;
}
}
cout<<"YES"<<endl;
}
D - Dice in Line
We have \(N\) dice arranged in a line from left to right. The \(i\)-th die from the left shows \(p_i\) numbers from \(1\) to \(p_i\) with equal probability when thrown.
We will choose \(K\) adjacent dice, throw each of them independently, and compute the sum of the numbers shown. Find the maximum possible value of the expected value of this sum.
Solution
根据期望的线性性质,很容易发现只要求个最大区间和就可以了。怎么求呢,前缀和啊。
因为没加fixed
数字大时飘成科学计数法 WA 了一发,我 TM 真是个憨憨。
#include <bits/stdc++.h>
using namespace std;
int n,k,p[200005];
int main() {
ios::sync_with_stdio(false);
cin>>n>>k;
for(int i=1;i<=n;i++) cin>>p[i], p[i]+=p[i-1];
int mx=0;
for(int i=0;i+k<=n;i++) mx=max(mx,p[i+k]-p[i]);
cout<<setiosflags(ios::fixed)<<setprecision(12)<<(k+mx)*0.5;
}
E - Almost Everywhere Zero
Find the number of integers between \(1\) and \(N\) (inclusive) that contains exactly \(K\) non-zero digits when written in base ten.
\(1 \leq N < 10^{100}\),
\(1 \leq K \leq 3\)
Solution
暴力数位 dp 即可,当然可能有更简单的方法,但我觉得推推公式什么的太麻烦了,还是直接数位 dp 吧
套路性地,设 \(f[i][j]\) 表示长度为 \(i\) 的数字串,有 \(j\) 个非零数位的方案数,转移方程
\]
注意 \(i=0\) 或者 \(j=0\) 的时候需要特判一下
暴力转移预处理出 \(f[i][j]\) 后,我们来统计答案。先把 \(N\) 本身判掉,然后枚举 \(x\) 从哪一位开始比 \(N\) 小,那么这一位之前的就全部确定了(和 \(N\) 一样),这一位讨论一下是 \(0\) 和不是 \(0\) 的情况,每种情况下,这位之后的部分都只约束了非零数字的个数,求和即可得到答案。
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1005;
char str[N];
int n,k,ans,f[N][5];
signed main() {
cin>>str+1;
n=strlen(str+1);
for(int i=1;i<=n;i++) str[i]-='0';
cin>>k;
f[0][0]=1;
for(int i=1;i<=n;i++) {
f[i][0]=f[i-1][0];
for(int j=1;j<=3;j++) {
f[i][j]=f[i-1][j]+9*f[i-1][j-1];
}
}
int cnt=0;
for(int i=1;i<=n;i++) {
//Calculate a[i] = 0
if(str[i]) {
if(k-cnt>=0) ans+=f[n-i][k-cnt];
}
//Calculate a[i] > 0
if(str[i]>1) {
if(k-cnt-1>=0) ans+=(str[i]-1)*f[n-i][k-cnt-1];
}
if(str[i]) ++cnt;
}
if(cnt==k) ++ans;
cout<<ans;
}
F - Many Many Paths
Snuke is standing on a two-dimensional plane. In one operation, he can move by \(1\) in the positive x-direction, or move by \(1\) in the positive y-direction.
Let us define a function \(f(r, c)\) as follows:
\(f(r,c) :=\) (The number of paths from the point \((0, 0)\) to the point \((r, c)\) that Snuke can trace by repeating the operation above)
Given are integers \(r_1, r_2, c_1,\) and \(c_2\). Find the sum of \(f(i, j)\) over all pair of integers \((i, j)\) such that \(r_1 ≤ i ≤ r_2\) and \(c_1 ≤ j ≤ c_2\), and compute this value modulo \((10^9+7)\).
\(1 ≤ r_1 ≤ r_2 ≤ 10^6\),
\(1 ≤ c_1 ≤ c_2 ≤ 10^6\)
Solution
首先单个答案是容易求的,根据高中数学可知 \(f(i,j) = C_{i+j}^i\)
设 \(g(i,j)\) 是它的二维前缀和,那么原答案一定可以用四个 \(g(i,j)\) 的和差表示
下面考虑如何求 \(g(i,j)\),打印一张数表看一看,很容易想到沿着 \(j\) 维度方向做差试试,观察容易得到
\]
于是得到
\]
考虑到 \(g(i,0)\) 是显然的,而 \(f(i,j)\) 很容易做单维度递推,即
\]
后者用逆元处理即可,每次逆元计算(使用快速幂方法)花费 \(O(\log n)\),于是我们可以在 \(O(n \log n)\) 时间内求出 \(\sum_j f(i,j)\),即求出了 \(g(i,j)\)
总体时间复杂度 \(O(n \log n)\)
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ll long long
const int mod = 1e+9+7;
ll qpow(ll p,ll q) {
ll r = 1;
for(; q; p*=p, p%=mod, q>>=1) if(q&1) r*=p, r%=mod;
return r;
}
int inv(int p) {
return qpow(p,mod-2);
}
const int N = 1e+6+5;
int f[N],g[N];
int solve(int i,int m) {
memset(f,0,sizeof f);
memset(g,0,sizeof g);
g[0]=i+1; f[1]=i+1;
for(int k=2;k<=m+1;k++) f[k]=f[k-1]*(i+k)%mod*inv(k)%mod;
for(int j=1;j<=m;j++) g[j]=(g[j-1]+f[j+1])%mod;
return g[m];
}
signed main() {
int r1,c1,r2,c2;
cin>>r1>>c1>>r2>>c2;
--r1; --c1;
cout<<((solve(r2,c2)-solve(r1,c2)-solve(r2,c1)+solve(r1,c1)%mod+mod)%mod)<<endl;
}
AtCoder Beginner Contest 154 题解的更多相关文章
- AtCoder Beginner Contest 153 题解
目录 AtCoder Beginner Contest 153 题解 A - Serval vs Monster 题意 做法 程序 B - Common Raccoon vs Monster 题意 做 ...
- AtCoder Beginner Contest 177 题解
AtCoder Beginner Contest 177 题解 目录 AtCoder Beginner Contest 177 题解 A - Don't be late B - Substring C ...
- AtCoder Beginner Contest 184 题解
AtCoder Beginner Contest 184 题解 目录 AtCoder Beginner Contest 184 题解 A - Determinant B - Quizzes C - S ...
- AtCoder Beginner Contest 173 题解
AtCoder Beginner Contest 173 题解 目录 AtCoder Beginner Contest 173 题解 A - Payment B - Judge Status Summ ...
- AtCoder Beginner Contest 172 题解
AtCoder Beginner Contest 172 题解 目录 AtCoder Beginner Contest 172 题解 A - Calc B - Minor Change C - Tsu ...
- AtCoder Beginner Contest 169 题解
AtCoder Beginner Contest 169 题解 这场比赛比较简单,证明我没有咕咕咕的时候到了! A - Multiplication 1 没什么好说的,直接读入两个数输出乘积就好了. ...
- AtCoder Beginner Contest 148 题解
目录 AtCoder Beginner Contest 148 题解 前言 A - Round One 题意 做法 程序 B - Strings with the Same Length 题意 做法 ...
- AtCoder Beginner Contest 151 题解报告
总的来说,这次的题目比较水,然而菜菜的我并没有把所有题目都做完,话不多说,直接来干货: A:Next Alphabet 题目链接:https://atcoder.jp/contests/abc151/ ...
- AtCoder Beginner Contest 115 题解
题目链接:https://abc115.contest.atcoder.jp/ A Christmas Eve Eve Eve 题目: Time limit : 2sec / Memory limit ...
随机推荐
- Centos 7.5 搭建FTP配置虚拟用户
Centos 7.5 搭建FTP配置虚拟用户 1.安装vsftpd #vsftpd下载地址 http://mirror.centos.org/centos/7/os/x86_64/Packages/v ...
- opencv —— contourArea、arcLength 计算轮廓面积与长度
计算轮廓面积:contourArea 函数 double contourArea(InputArray contour, bool oriented = false); contour,输入的二维点集 ...
- winform重绘控件边框
首先添加一个用户控件 对于重绘边框有三个需要考虑的东西 1:是否显示边框 2:边框颜色 3:边框宽度 所以定义三个私有变量 /// <summary>/// 是否显示边框/// </ ...
- Python和Anoconda和Pycharm联合使用教程
简介 Python是一种跨平台的计算机程序设计语言.是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的.大型项目的开发. ...
- js对象模型2
g
- opencv —— HoughLines、HoughLinesP 霍夫线变换原理(标准霍夫线变换、多尺度霍夫线变换、累积概率霍夫线变换)及直线检测
霍夫线变换的原理 一条直线在图像二维空间可由两个变量表示,有以下两种情况: ① 在笛卡尔坐标系中:可由参数斜率和截距(k,b)表示. ② 在极坐标系中:可由参数极经和极角(r,θ)表示. 对于霍夫线变 ...
- ajax请求携带cookie和自定义请求头header
参考链接:https://blog.csdn.net/menghuanzhiming/article/details/102736312
- k8s 在Centos上 安装
k8s安装步骤: 1.所有机器上执行以下命令,准备安装环境:(注意是所有机器,主机master,从机node都要安装) 1.1.安装epel-release源(EPEL (Extra Packages ...
- Window Api 通过账号密码访问共享文件夹
using System; using System.Runtime.InteropServices; namespace PushGCodeService { public class Shared ...
- hibernate.exception.GenericJDBCException: could not extract ResultSet 解决办法
这句话翻译过来就是无法提取ResultSet 我在联查表的视图的时候发现的问题,明明之前好好的 那么你就得想想了 你再把错误信息往上翻翻,能不能看到 no viable alternative a ...