【题解】有标号的DAG计数1
[HZOI 2015] 有标号的DAG计数 I
设\(f_i\)为\(i\)个点时的DAG图,(不必联通)
考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\(0\)的点转移。
考虑如何保证没有环,钦定完出度为\(0\)的点后,这些点就等着被连接了。还剩下一些点,这些点只要不构成环就好了,就是个子结构,访问以前的DP数组就好了。
\]
这样转移显然有方案重复的情况,因为如此计数就破坏了钦定,出度为\(0\)点可能更多!(我们不加限制的枚举\(j(i-j)\)条边是否存在)。
考虑一种方案出现了多少次,很显然出现的分布是这样的:
\]
借鉴一下[【题解】HAOI2018]染色(NTT+容斥/二项式反演)(怎么又是你),直接乘上一个\((-1)^?\)就就容斥掉了,试一试就发现是\((-1)^{j+1}\)
转移是:
\]
或者学习神Itst的神仙待定系数法
设枚举的出度为\(0\)的点的个数为i时的容斥系数为\(f_i\),那么一个实际上存在\(x\)个出度为0的点的DAG的贡献就是\(\sum\limits_{i=1}^x \binom{x}{i} f_i = 1\),不难由二项式定理知道\(fi=(−1)^{i−1}\)
orz orz
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=5e3+5;
const int mod=10007;
int c[maxn][maxn];
int dp[maxn];
int bin[maxn*maxn];
int main(){
freopen("DAG.in","r",stdin);
freopen("DAG.out","w",stdout);
int n=qr();
bin[0]=1;dp[0]=1;
for(register int t=0;t<=n;++t){
c[t][0]=1;
for(register int i=1;i<=t;++i){
c[t][i]=(c[t-1][i-1]+c[t-1][i])%mod;
}
}
for(register int t=1;t<=n*n;++t) bin[t]=(bin[t-1]<<1)%mod;
for(register int t=1;t<=n;++t){
for(register int i=1,d;i<=t;++i){
d=mod-c[t][i]*bin[i*(t-i)]%mod*dp[t-i]%mod;
if(i&1) d=mod-d;
dp[t]=(dp[t]+d)%mod;
}
}
printf("%d\n",dp[n]);
return 0;
}
【题解】有标号的DAG计数1的更多相关文章
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
- 【题解】有标号的DAG计数3
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...
- 【题解】有标号的DAG计数2
[HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...
- 有标号的DAG计数(FFT)
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...
- COGS2356 【HZOI2015】有标号的DAG计数 IV
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...
- COGS2355 【HZOI2015】 有标号的DAG计数 II
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...
- COGS 2353 2355 2356 2358 有标号的DAG计数
不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt ...
- 有标号的DAG计数 III
Description 给定一正整数n,对n个点有标号的有向无环图进行计数,这里加一个限制:此图必须是弱连通图.输出答案 mod 10007 的结果. Solution 弱连通图即把边变成无向之后成为 ...
- 有标号的DAG计数 II
Description 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 Solution 考虑 \(O(n^2)\) DP 枚举出度为 \( ...
随机推荐
- Pytorch使用tensorboardX网络结构可视化。超详细!!!
https://www.jianshu.com/p/46eb3004beca 1 引言 我们都知道tensorflow框架可以使用tensorboard这一高级的可视化的工具,为了使用tensorbo ...
- SDUT-2054_数据结构实验之链表九:双向链表
数据结构实验之链表九:双向链表 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 学会了单向链表,我们又多了一种解决问题的 ...
- 深度学习——Xavier初始化方法
“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedf ...
- 在Linux/Unix上运行SuperSocket
SuperSocket通过(Mono 2.10或更新版本)来实现跨平台的特性 由于Unix/Linux不同于Windows上的文件路径格式,SuperSocket提供了专用于Unix/Linux系统上 ...
- display的值和对应的意义
none:隐藏对应元素,不为隐藏的对象保留其物理空间 block:指定对象为块元素 inline:指定对象为内联元素 inline-block:指定对象为内联块元素 table:指定对象为块元素的表格 ...
- 不需内测账号,带你体验微信小程序完整开发过程
不需内测账号,带你体验微信小程序完整开发过程 2016年09月24日 - 作者: SwiftCafe 微信小程序还没正式发布就已经迅速成为大家讨论的焦点,那么大家可能觉得只有收到内测邀请才能体验小程序 ...
- JS 复制文本兼容移动端 iOS & android
有几个需要注意的地方. 首先文本只有选中才可以复制,所以简单的做法就是创建一个隐藏的 input,然后绑定需要复制的文本. 另外如果将 input 设置为 `type="hidden&quo ...
- tensorflow学习笔记(四十五):sess.run(tf.global_variables_initializer()) 做了什么?
当我们训练自己的神经网络的时候,无一例外的就是都会加上一句 sess.run(tf.global_variables_initializer()) ,这行代码的官方解释是 初始化模型的参数.那么,它到 ...
- nginx——前端服务环境
背景:之前一直使用tomcat服务器来作为测试环境:(vue项目打包后想测试下生产环境下有没有问题!使用tomcat有各种问题,还怀疑是我们源码有问题?尴尬)今天公司同事才告诉我tomcat是专门为j ...
- 高可用之nginx配置文件详解
#user nobody; worker_processes 1;##工作线程数,一般和cpu的核数相同:可通过ps -ef | nginx查看线程数 #配置错误日志位置 #error_log log ...