collections

介绍

collections是Python内建的一个集合模块,提供了许多有用的集合类和方法。

可以把它理解为一个容器,里面提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择

import collections

print(dir(collections))
# ['ChainMap', 'Counter', 'Mapping', 'MutableMapping', 'OrderedDict', 'UserDict', 'UserList', 'UserString', '_Link', '_OrderedDictItemsView', '_OrderedDictKeysView', '_OrderedDictValuesView', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__getattr__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_chain', '_collections_abc', '_count_elements', '_eq', '_heapq', '_iskeyword', '_itemgetter', '_nt_itemgetters', '_proxy', '_recursive_repr', '_repeat', '_starmap', '_sys', 'abc', 'defaultdict', 'deque', 'namedtuple']

里面有许多方法,我们只介绍常用的方法。

常用方法

  •  namedtuple() : 创建一个命名元组子类的工厂函数
  •  deque :      高效增删改双向列表,类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)
  •  defaultdict :   当字典查询时,为key不存在提供一个默认值。
  •  OrderedDict :   有序词典,就是记住了插入顺序
  • Counter :          计数功能

1. namedtuple()  命名元组

参数

collections.namedtuple(typename, field_names, *, rename=False, defaults=None, module=None)
  1. typename :  命名的名字,返回一个新的元组子类,名为 typename
  2. field_names : 可以是一个['x', 'y']这样的序列,也可以是'x, y'或者'x y'
  3. rename :     python3.1添加,如果 rename 为真, 无效域名会自动转换成位置名。比如 ['abc', 'def', 'ghi', 'abc'] 转换成 ['abc', '_1', 'ghi', '_3'] , 消除关键词 def 和重复域名 abc 。
  4. defaults :    python3.7添加, defaults 可以为 None 或者是一个默认值的 iterable(可迭代对象)。如果一个默认值域必须跟其他没有默认值的域在一起出现, defaults 就应用到最右边的参数。比如如果域名 ['x', 'y', 'z'] 和默认值 (1, 2) ,那么 x 就必须指定一个参数值 ,y 默认值 1 , z 默认值 2 。
  5. module :     python3.6添加,如果  module  值有定义,命名元组的 __module__ 属性值就被设置。

使用

例如我想定义一个点(x, y),可以给它起个名字为Points

import collections

point = collections.namedtuple('Points', ['x', 'y'])
p1 = point(2, 3)
p2 = point(4, 2) print(p1) # Points(x=2, y=3)
print(p2) # Points(x=4, y=2)

用 isinstance 判断其类型

print(isinstance(p1, point)) # True
print(isinstance(p1, tuple)) # True

可以发现它即属于 point 类型,也属于 tuple 类型。

使用 _make 赋值

a= [11, 3]
p1._make(a)
print(p1) # Points(x=11, y=3)

使用 _replace 更改值

p1._replace(x=5)
print(p1) # Points(x=5, y=3)

2. deque 双端队列

参数

collections.deque([iterable[, maxlen]])

返回一个新的双向队列对象,从左到右初始化(用方法 append()) ,从 iterable (迭代对象) 数据创建。如果 iterable 没有指定,新队列为空。

  1. iterable :迭代对象,可以是字符串,列表等可迭代对象。
  2. maxlen :   maxlen  没有指定或者是 None , deque 可以增长到任意长度。否则, deque 就限定到指定最大长度。一旦限定长度的 deque 满了,当新项加入时,同样数量的项就从另一端弹出。

使用

from collections import deque

q = deque(['a', 'b', 'c'], maxlen=10)
# 从右边添加一个元素
q.append('d')
print(q) # deque(['a', 'b', 'c', 'd'], maxlen=10) # 从左边删除一个元素
print(q.popleft()) # a
print(q) # deque(['b', 'c', 'd'], maxlen=10) # 扩展队列
q.extend(['i', 'j'])
print(q) # deque(['b', 'c', 'd', 'i', 'j'], maxlen=10) # 查找下标
print(q.index('c')) # # 移除第一个'd'
q.remove('d')
print(q) # deque(['b', 'c', 'i', 'j'], maxlen=10) # 逆序
q.reverse()
print(q) # deque(['j', 'i', 'c', 'b'], maxlen=10) # 最大长度
print(q.maxlen) #

方法全:

append(x):添加 x 到右端。

appendleft(x):添加 x 到左端。

clear():移除所有元素,使其长度为0.

copy():创建一份浅拷贝。3.5 新版功能.

count(x):计算deque中个数等于 x 的元素。3.2 新版功能.

extend(iterable):扩展deque的右侧,通过添加iterable参数中的元素。

extendleft(iterable):扩展deque的左侧,通过添加iterable参数中的元素。注意,左添加时,在结果中iterable参数中的顺序将被反过来添加。

index(x[, start[, stop]]):返回第 x 个元素(从 start 开始计算,在 stop 之前)。返回第一个匹配,如果没找到的话,升起 ValueError 。3.5 新版功能.

insert(i, x):在位置 i 插入 x 。如果插入会导致一个限长deque超出长度 maxlen 的话,就升起一个 IndexError 。3.5 新版功能.

pop():移去并且返回一个元素,deque最右侧的那一个。如果没有元素的话,就升起 IndexError 索引错误。

popleft():移去并且返回一个元素,deque最左侧的那一个。如果没有元素的话,就升起 IndexError 索引错误。

remove(value):移去找到的第一个 value。 如果没有的话就升起 ValueError 。

reverse():将deque逆序排列。返回 None 。3.2 新版功能.

rotate(n=1):向右循环移动 n 步。 如果 n 是负数,就向左循环。如果deque不是空的,向右循环移动一步就等价于 d.appendleft(d.pop()) , 向左循环一步就等价于 d.append(d.popleft()) 。

Deque对象同样提供了一个只读属性:
maxlen:Deque的最大尺寸,如果没有限定的话就是 None 。

全部方法

3. defaultdict 默认值字典

使用

当key不存在时返回默认值

from collections import defaultdict

dd = defaultdict(lambda: 'not exist')
dd['key1'] = 'abc'
print(dd['key1']) # key1存在
# 'abc'
print(dd['key2']) # key2不存在,返回默认值
# 'not exist'

使用 list 作为 default_factory ,很容易将序列作为键值对加入字典:

from collections import defaultdict

d = defaultdict(list)
s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)] for k, v in s:
d[k].append(v) print(d) # defaultdict(<class 'list'>, {'yellow': [1, 3], 'blue': [2, 4], 'red': [1]})

相当于

d = {}
s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)] for k, v in s:
d.setdefault(k, []).append(v) print(d) # {'yellow': [1, 3], 'blue': [2, 4], 'red': [1]}

设置 default_factory 为 int ,可以很好的用于计数

s = 'mississippi'
d = defaultdict(int)
for k in s:
d[k] += 1 print(d) # defaultdict(<class 'int'>, {'m': 1, 'i': 4, 's': 4, 'p': 2})

4. OrderedDict 有序字典

有序词典就像常规词典一样,但有一些与排序操作相关的额外功能。

但是内置的  dict  类已经有了记住插入顺序的能力(在 Python 3.7 中保证了这种新行为),所以它变得不那么重要了。

使用

popitem(last=True) :有序字典的  popitem()  方法移除并返回一个 (key, value) 键值对。 如果 last 值为真,则按 LIFO 后进先出的顺序返回键值对,否则就按 FIFO 先进先出的顺序返回键值对。

from collections import OrderedDict

d = OrderedDict(a=1, b=2, c=3, d=4,e=5)
print(d) # OrderedDict([('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', 5)])
print(d.popitem(last=True)) # ('e', 5)
print(d.popitem(last=False)) # ('a', 1)
print(d) # OrderedDict([('b', 2), ('c', 3), ('d', 4)]

move_to_end(key, last=True) :将现有 key 移动到有序字典的任一端。 如果 last 为真值(默认)则将元素移至末尾;如果 last 为假值则将元素移至开头。如果 key 不存在则会触发 KeyError。

from collections import OrderedDict

d = OrderedDict(a=1, b=2, c=3, d=4,e=5)
print(d) # OrderedDict([('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', 5)]) d.move_to_end(key='c', last=True)
print(d) # OrderedDict([('a', 1), ('b', 2), ('d', 4), ('e', 5), ('c', 3)]) d.move_to_end(key='b', last=False)
print(d) # OrderedDict([('b', 2), ('a', 1), ('d', 4), ('e', 5), ('c', 3)])

5. Counter 计数

Counter  是一个  dict  的子类,用于计数可哈希对象。特别方便!

使用

字符串

from collections import Counter

c = Counter()
for i in 'sfsadfsdjklgsdla':
c[i] += 1 print(isinstance(c,Counter)) # True
print(isinstance(c,dict)) # True
print(c) # Counter({'s': 4, 'd': 3, 'f': 2, 'a': 2, 'l': 2, 'j': 1, 'k': 1, 'g': 1}) c2 = Counter('asfjslfjsdlfjgkls')
print(c2) # Counter({'s': 4, 'd': 3, 'f': 2, 'a': 2, 'l': 2, 'j': 1, 'k': 1, 'g': 1})

列表

from collections import Counter

c = Counter(['red', 'blue', 'red', 'green', 'blue', 'blue'])
print(c) # Counter({'blue': 3, 'red': 2, 'green': 1})

elements() :返回一个迭代器,其中每个元素将重复出现计数值所指定次。 元素会按首次出现的顺序返回。 如果一个元素的计数值小于一, elements()  将会忽略它。

c = Counter(a=4, b=2, c=0, d=-2)
print(sorted(c.elements())) # ['a', 'a', 'a', 'a', 'b', 'b']

most_common([n]) :返回一个列表,其中包含 n 个最常见的元素及出现次数,按常见程度由高到低排序。 如果 n 被省略或为 None, most_common() 将返回计数器中的 所有 元素。 计数值相等的元素按首次出现的顺序排序:

c = Counter('abracadabra')
print(c.most_common(3)) # [('a', 5), ('b', 2), ('r', 2)]

subtract([iterable-or-mapping]) :从 迭代对象 或 映射对象 减去元素。像  dict.update()  但是是减去,而不是替换。输入和输出都可以是0或者负数。

c = Counter(a=4, b=2, c=0, d=-2)
d = Counter(a=1, b=2, c=3, d=4)
c.subtract(d)
print(c) # Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

附上中文文档,走起...

。。

Python3 collections模块的使用的更多相关文章

  1. Python3 collections模块

    https://www.cnblogs.com/zhangxinqi/p/7921941.html http://www.wjhsh.net/meng-wei-zhi-p-8259022.html h ...

  2. Python3简明教程(十四)—— Collections模块

    collections 是 Python 内建的一个集合模块,提供了许多有用的集合类. 在这个实验我们会学习 Collections 模块.这个模块实现了一些很好的数据结构,它们能帮助你解决各种实际问 ...

  3. python的Collections 模块

    Collections 模块 知识点 Counter 类 defaultdict 类 namedtuple 类 在这个实验我们会学习 Collections 模块.这个模块实现了一些很好的数据结构,它 ...

  4. 4-24日 collections模块 random模块 time模块 sys模块 os模块

    1, collections模块 在内置数据类型(dict.list.set.tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter.deque.defaultdi ...

  5. 《Python》常用模块之collections模块

    内置的数据类型: int  float  complex str  list  tuple dict  set 基础数据类型: int  float  complex str  list  tuple ...

  6. python拓展2 collections模块与string模块

    知识内容 1.collections模块介绍 2.collections模块使用 3.string模块介绍及使用 一.collections模块介绍 collections模块中提供了很多python ...

  7. Python中collections模块的使用

    本文将详细讲解collections模块中的所有类,和每个类中的方法,从源码和性能的角度剖析. 一个模块主要用来干嘛,有哪些类可以使用,看__init__.py就知道 '''This module i ...

  8. Python中的collections模块

    Python中内置了4种数据类型,包括:list,tuple,set,dict,这些数据类型都有其各自的特点,但是这些特点(比如dict无序)在一定程度上对数据类型的使用产生了约束,在某些使用场景下效 ...

  9. python开发模块基础:collections模块&paramiko模块

    一,collections模块 在内置数据类型(dict.list.set.tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter.deque.defaultdic ...

随机推荐

  1. dataframe添加元素指定为列表,不同for循环命名空间下的变量重复问题

    split=pd.DataFrame({'data':[0],'len':0,'count':0},index=[0])for i_t in range(over_128.shape[0]): ct= ...

  2. 【批量添加】-SqlBulkCopy语句 标签: sql批量添加 2015-12-20 14:39 1367人阅读 评论(33)

    上篇博客我们介绍了通过拼接sql字符串的方法来对sql数据库进行批量添加,但是通过语句拼接insert语句有个缺点,就是每次最多只能添加1000条.当时我们另外一个界面也用到了批量添加,但是这个界面轻 ...

  3. Linux 用户he用户组管理

    8)系统中有一类用户称为伪用户(psuedo users). 这些用户在/etc/passwd  文件中也占有一条记录,但是不能登陆,因为他们的登陆shell 为空,他们的存在主要是方便系统管理,满足 ...

  4. python 实现A*算法

    A*作为最常用的路径搜索算法,值得我们去深刻的研究.路径规划项目.先看一下维基百科给的算法解释:https://en.wikipedia.org/wiki/A*_search_algorithm A ...

  5. HZOJ 砍树

    考试时打了个暴力T40,正解是整除分块???完全没听过……而且这题居然还有人A了…… 整除分块 暴力就不说了,直接上正解: 将d除过去,右边向下取整(显然不能向上取整啊,会超k的)这个不用处理,整除就 ...

  6. selenium webdriver学习(九)------------如何操作cookies(转)

    selenium webdriver学习(九)------------如何操作cookies 博客分类: Selenium-webdriver   Web 测试中我们经常会接触到Cookies,一个C ...

  7. poj 1092 Farmland (Geometry)

    1092 -- Farmland 怎么最近做几何题都这么蛋疼,提交C++过不了交G++就过了.据我估计,原因是用了atan2这个函数,或者是其他一些函数造成了精度的影响.不管怎样,这题最后还是过了~ ...

  8. @bzoj - 4379@ [POI2015] Modernizacja autostrady

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一棵无根树,边权都是1,请去掉一条边并加上一条新边,定义直径 ...

  9. Android 动态设置控件获取焦点

    之前写过一篇博客,简单的介绍了Android 隐藏EditText的焦点,之所以要隐藏EditText的焦点,是因为当应用在第一次进入某个Activity时,由于该页面中的EditText获取了焦点, ...

  10. Java安装完毕后的环境配置

    右键计算机=>属性=>高级系统设置=>环境变量=>系统变量=>新建系统变量 变量名:JAVA_HOME变量值:E:\Program Files\Java\jdk-9.0. ...