PP: Time series clustering via community detection in Networks
Improvement can be done in fulture:
1. the algorithm of constructing network from distance matrix.
2. evolution of sliding time window
3. the later processing or visual analysis of generated graphs.
Thinking:
1.What's the ground truth in load profiles?
For clustering, there's no ground truth, so how to tune the parameters or options in step2, step3 and step4? In this paper, they have the labels of time series, so they use RI to guide their selection of parameters, for example: k and \epsilon.
Suppose: similar time series tend to connect to each other and form communities.
Background and related works
shaped based distance measures; feature based distance measures; structure based distance measures. time series clustering; community detection in networks.
Methodology
- data normalization
- time series distance calculation
- network construction
- community detection
Which step influence the clustering results:
distance calculation algorithm; network construction methods. community detection methods.
2. distance matrix
calculating the distance for each pair of time series in the data set and construct a distance matrix D, where dij is the distance between series Xi and XJ . A good choice of distance measure has strong influence on the network construction and clustering result.
3. network construction
Two common method: K-NN and \epsilon-NN; EXPLORATION
Experiments
45 time series data sets.
Purpose: check the performance of each combination of step2, step3,and step4 to each data sets.
Index指标:Rand index.
Vary the parameters: the k of k-NN from 1 to n-1; the epsilon of epsilon-NN from min(D) to max(D) in 100 steps.
Step2: Manhattan, Euclidean, infinite Norm, DTW, short time series, DISSIM, Complexity-Invariant, Wavlet tranform, Pearson correlation, Intergrated periodogram.
Step3: fast greedy; multilevel; walktrap; infomap; label propagration.
Step4: vary the parameter of k and \epsilon.
Results
1. the effect of k and \epsilon to the clustering results(RI).
The k-NN construction method just allows discrete values of k while the ε-NN method accepts continuous values. When k and ε are small, vertices tend to make just few connections.
??what's the meaning of A,B,C,D in figure 5.
2. the statistical test of the effect of different distance methods. Friedman test and Nemenyi test.
多个算法在多个数据库上的对比:
- 如果样本符合ANOVA(repeated measure)的假设(如正态、等方差),优先使用ANOVA。
- 如果样本不符合ANOVA的假设,使用Friedman test配合Nemenyi test做post-hoc。
- 如果样本量不一样,或因为特定原因不能使用Friedman-Nemenyi,可以尝试Kruskal Wallis配合Dunn's test。值得注意的是,这种方法是用来处理独立测量数据,要分情况讨论。
DTW measure presents the best results for both network construction methods.
3. the statistical test of the effect of community detection algorithms. Friedman test and Nemenyi test.
4. comparison to rival methods.
i. some classic clustering algorithms: k-medoids, complete-linkage, single-linkage, average-linkage, median-linkage, centroid-linkage and diana;
ii. three up-to-date ones: Zhang’s method [41], Maharaj’s method [24] and PDC [5]
5. detect time series clusters with time-shifts
Suppose: Clustering algorithms should be capable of detecting groups of time series that have similar variations in time.
CBF dataset: 30个序列,一共三组, 全部正确分组/clustering.
6. detect shape patterns
1000 time series of length 128, four groups.
detect shape patterns (UD, DD, DU, UU);
Discussion
1. the same idea can be extended to multivariate time series clustering.
2. evaluate the simulation results using different indexes.
3. As future works, we plan to propose automatic strategies for choosing the best number of neighbors (k and ε) and speeding up the network construction method, instead of using the naive method.
4. We also plan to apply the idea to solve other kinds of problems in time series analysis, such as time series prediction. ??
Supplementary knowledge:
1. box plot
它能显示出一组数据的最大值、最小值、中位数、及上下四分位数。
以下是箱形图的具体例子:
+-----+-+
* o |-------| + | |---|
+-----+-+ +---+---+---+---+---+---+---+---+---+---+ 分数
0 1 2 3 4 5 6 7 8 9 10
这组数据显示出:
- 最小值(minimum)=5
- 下四分位数(Q1)=7
- 中位数(Med --也就是Q2)=8.5
- 上四分位数(Q3)=9
- 最大值(maximum )=10
- 平均值=8
- 四分位间距(interquartile range)={\displaystyle (Q3-Q1)}=2 (即ΔQ)
2. 观念转变, experiment部分也很重要,不是可有可无的, 要细看。
3. 统计学检验
All models are wrong, but some are useful. ----------统计学家George Box.
4. univariate and multivariate time series.
Univariate time series: Only one variable is varying over time. For example, data collected from a sensor measuring the temperature of a room every second. Therefore, each second, you will only have a one-dimensional value, which is the temperature.
Multivariate time series: Multiple variables are varying over time. For example, a tri-axial accelerometer三轴加速器. There are three accelerations, one for each axis (x,y,z) and they vary simultaneously over time.
Considering the data you showed in the question, you are dealing with a multivariate time series, where value_1
, value_2
andvalue_3
are three variables changing simultaneously over time.
PP: Time series clustering via community detection in Networks的更多相关文章
- PP: Learning representations for time series clustering
Problem: time series clustering TSC - unsupervised learning/ category information is not available. ...
- 【论文阅读】A practical algorithm for distributed clustering and outlier detection
文章提出了一种分布式聚类的算法,这是第一个有理论保障的考虑离群点的分布式聚类算法(文章里自己说的).与之前的算法对比有以下四个优点: 1.耗时短O(max{k,logn}*n), 2.传递信息规模小: ...
- 论文解读(CGC)《CGC: Contrastive Graph Clustering for Community Detection and Tracking》
论文信息 论文标题:CGC: Contrastive Graph Clustering for Community Detection and Tracking论文作者:Namyong Park, R ...
- A Node Influence Based Label Propagation Algorithm for Community detection in networks 文章算法实现的疑问
这是我最近看到的一篇论文,思路还是很清晰的,就是改进的LPA算法.改进的地方在两个方面: (1)结合K-shell算法计算量了节点重重要度NI(node importance),标签更新顺序则按照NI ...
- LabelRank非重叠社区发现算法介绍及代码实现(A Stabilized Label Propagation Algorithm for Community Detection in Networks)
最近在研究基于标签传播的社区分类,LabelRank算法基于标签传播和马尔科夫随机游走思路上改装的算法,引用率较高,打算将代码实现,便于加深理解. 这个算法和Label Propagation 算法不 ...
- PP: Time series anomaly detection with variational autoencoders
Problem: unsupervised anomaly detection Model: VAE-reEncoder VAE with two encoders and one decoder. ...
- [Localization] R-CNN series for Localization and Detection
CS231n Winter 2016: Lecture 8 : Localization and Detection CS231n Winter 2017: Lecture 11: Detection ...
- PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...
- 关于目标检测(Object Detection)的文献整理
本文对CV中目标检测子方向的研究,整理了如下的相关笔记(持续更新中): 1. Cascade R-CNN: Delving into High Quality Object Detection 年份: ...
随机推荐
- Linux systemctl系统工具常用总结(详)
systemctl是一个系统自带的服务管理工具,可以管理系统的服务的,启动.停止.重启.自启.监视.也可以对脚本程序后台运行管理. 文章以nginx.service举例 基础命令: systemctl ...
- Ubuntu18--使用vi编辑器方向键以及Backspace乱码问题
解决方法一: 可以进入vi /etc/vim/vimrc.tiny目录对vim配置文件进行修改 修改内容: 修改完成就可以正常使用了.(换行的时候Esc退出编译状态,回车换行,输入第二句话,在按Esc ...
- 剑指offer-面试题33-二叉搜索树的后序遍历序列-二叉树遍历
/* 题目: 给定一个序列,判断它是否为某个二叉搜索树的后序遍历. */ /* 思路: 二叉搜索树:左子树<根节点<右子树. 序列的最右端为根节点,小于根节点的左半部分为左子树,大于根节点 ...
- Mac brew update 慢~~~
正题开始之前, 如果对 Homebrew 不太了解, 这里有一篇很好的介绍文章: macOS 包管理工具 Homebrew 不完全指南 花个几分钟读一下, 绝对超值! 正题 Homebrew 通过 G ...
- [大数据技术]Kettle初次连接MySQL数据库 报错问题 错误连接数据库 Error occured while trying to connect to the database Exception while loading class org.gjt.mm.mysql.Driver
报错内容如下: 错误连接数据库 [foodmartconn] : org.pentaho.di.core.exception.KettleDatabaseException: Error occure ...
- C#中System.ServiceProgress报错
场景 在C#中检索本地计算机所有服务时,使用 System.ServiceProcess.ServiceController[] services = System.ServiceProcess.Se ...
- memcached的安装、常用命令以及在实际开发中的案例
Memcached注意缺乏安全认证以及安全管制需要将Memcached服务器放置在防火墙(iptables)之后 Linux平台 (CentOS)安装Memcached 安装依赖yum -y inst ...
- python全栈学习 day02
pycharm 安装设置: 按照百度百科或者官网介绍下载,安装. 激活步骤 1:改host 2.输入激活信息,注意有效期. python 逻辑运算符://返回的均为bool值 与 and A and ...
- 看完它,你就全懂了十大Wifi芯片原厂!
看完它,你就全懂了十大Wifi芯片原厂! 来源:全球物联网观察 概要:不知不觉中,WiFi几乎已攻占了整个世界.现在只要你上网,可能就离不开WiFi了. 2014年是物联网WiFi市场关键的转折期 ...
- redis看这一篇就够了
redis的下载安装 准备相关依赖 yum install gcc 下载安装包 # 切换到存放安装包到目录 cd /usr/local # 下载安装包 wget http://download.red ...