Improvement can be done in fulture:
1. the algorithm of constructing network from distance matrix. 
2. evolution of sliding time window
3. the later processing or visual analysis of generated graphs.

Thinking:

1.What's the ground truth in load profiles?

For clustering, there's no ground truth, so how to tune the parameters or options in step2, step3 and step4? In this paper, they have the labels of time series, so they use RI to guide their selection of parameters, for example: k and \epsilon.

Suppose: similar time series tend to connect to each other and form communities.

Background and related works

shaped based distance measures; feature based distance measures; structure based distance measures. time series clustering; community detection in networks.

Methodology

  1. data normalization
  2. time series distance calculation
  3. network construction
  4. community detection

Which step influence the clustering results:

distance calculation algorithm; network construction methods. community detection methods.

2. distance matrix

calculating the distance for each pair of time series in the data set and construct a distance matrix D, where dij is the distance between series Xi and XJ . A good choice of distance measure has strong influence on the network construction and clustering result.

3. network construction

Two common method: K-NN and \epsilon-NN;  EXPLORATION

Experiments

45 time series data sets.

Purpose: check the performance of each combination of step2, step3,and step4 to each data sets.

Index指标:Rand index.

Vary the parameters: the k of k-NN from 1 to n-1;  the epsilon of epsilon-NN from min(D) to max(D) in 100 steps.

Step2: Manhattan, Euclidean, infinite Norm, DTW, short time series, DISSIM, Complexity-Invariant, Wavlet tranform, Pearson correlation, Intergrated periodogram.

Step3: fast greedy; multilevel; walktrap; infomap; label propagration.

Step4: vary the parameter of k and \epsilon.

Results

1. the effect of k and \epsilon to the clustering results(RI).

The k-NN construction method just allows discrete values of k while the ε-NN method accepts continuous values. When k and ε are small, vertices tend to make just few connections.

??what's the meaning of A,B,C,D in figure 5.

2. the statistical test of the effect of different distance methods. Friedman test and Nemenyi test.

多个算法在多个数据库上的对比:

  • 如果样本符合ANOVA(repeated measure)的假设(如正态、等方差),优先使用ANOVA。
  • 如果样本不符合ANOVA的假设,使用Friedman test配合Nemenyi test做post-hoc。
  • 如果样本量不一样,或因为特定原因不能使用Friedman-Nemenyi,可以尝试Kruskal Wallis配合Dunn's test。值得注意的是,这种方法是用来处理独立测量数据,要分情况讨论。

DTW measure presents the best results for both network construction methods.

3. the statistical test of the effect of community detection algorithms. Friedman test and Nemenyi test.

4. comparison to rival methods.

i. some classic clustering algorithms: k-medoids, complete-linkage, single-linkage, average-linkage, median-linkage, centroid-linkage and diana;

ii. three up-to-date ones: Zhang’s method [41], Maharaj’s method [24] and PDC [5]

5. detect time series clusters with time-shifts

Suppose: Clustering algorithms should be capable of detecting groups of time series that have similar variations in time.

CBF dataset: 30个序列,一共三组, 全部正确分组/clustering.

6. detect shape patterns

1000 time series of length 128, four groups.

detect shape patterns (UD, DD, DU, UU);

Discussion

1. the same idea can be extended to multivariate time series clustering.

2. evaluate the simulation results using different indexes.

3. As future works, we plan to propose automatic strategies for choosing the best number of neighbors (k and ε) and speeding up the network construction method, instead of using the naive method.

4. We also plan to apply the idea to solve other kinds of problems in time series analysis, such as time series prediction.   ??

Supplementary knowledge: 

1. box plot

它能显示出一组数据的最大值最小值中位数、及上下四分位数

以下是箱形图的具体例子:

                            +-----+-+
* o |-------| + | |---|
+-----+-+ +---+---+---+---+---+---+---+---+---+---+ 分数
0 1 2 3 4 5 6 7 8 9 10

这组数据显示出:

  • 最小值(minimum)=5
  • 下四分位数(Q1)=7
  • 中位数(Med --也就是Q2)=8.5
  • 上四分位数(Q3)=9
  • 最大值(maximum )=10
  • 平均值=8
  • 四分位间距(interquartile range)={\displaystyle (Q3-Q1)}=2 (即ΔQ)

2. 观念转变, experiment部分也很重要,不是可有可无的, 要细看。

3. 统计学检验

常用的机器学习算法比较?

All models are wrong, but some are useful. ----------统计学家George Box.

4. univariate and multivariate time series. 

Univariate time series: Only one variable is varying over time. For example, data collected from a sensor measuring the temperature of a room every second. Therefore, each second, you will only have a one-dimensional value, which is the temperature.

Multivariate time series: Multiple variables are varying over time. For example, a tri-axial accelerometer三轴加速器. There are three accelerations, one for each axis (x,y,z) and they vary simultaneously over time.

Considering the data you showed in the question, you are dealing with a multivariate time series, where value_1value_2 andvalue_3 are three variables changing simultaneously over time.

PP: Time series clustering via community detection in Networks的更多相关文章

  1. PP: Learning representations for time series clustering

    Problem: time series clustering TSC - unsupervised learning/ category information is not available. ...

  2. 【论文阅读】A practical algorithm for distributed clustering and outlier detection

    文章提出了一种分布式聚类的算法,这是第一个有理论保障的考虑离群点的分布式聚类算法(文章里自己说的).与之前的算法对比有以下四个优点: 1.耗时短O(max{k,logn}*n), 2.传递信息规模小: ...

  3. 论文解读(CGC)《CGC: Contrastive Graph Clustering for Community Detection and Tracking》

    论文信息 论文标题:CGC: Contrastive Graph Clustering for Community Detection and Tracking论文作者:Namyong Park, R ...

  4. A Node Influence Based Label Propagation Algorithm for Community detection in networks 文章算法实现的疑问

    这是我最近看到的一篇论文,思路还是很清晰的,就是改进的LPA算法.改进的地方在两个方面: (1)结合K-shell算法计算量了节点重重要度NI(node importance),标签更新顺序则按照NI ...

  5. LabelRank非重叠社区发现算法介绍及代码实现(A Stabilized Label Propagation Algorithm for Community Detection in Networks)

    最近在研究基于标签传播的社区分类,LabelRank算法基于标签传播和马尔科夫随机游走思路上改装的算法,引用率较高,打算将代码实现,便于加深理解. 这个算法和Label Propagation 算法不 ...

  6. PP: Time series anomaly detection with variational autoencoders

    Problem: unsupervised anomaly detection Model: VAE-reEncoder VAE with two encoders and one decoder. ...

  7. [Localization] R-CNN series for Localization and Detection

    CS231n Winter 2016: Lecture 8 : Localization and Detection CS231n Winter 2017: Lecture 11: Detection ...

  8. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

  9. 关于目标检测(Object Detection)的文献整理

    本文对CV中目标检测子方向的研究,整理了如下的相关笔记(持续更新中): 1. Cascade R-CNN: Delving into High Quality Object Detection 年份: ...

随机推荐

  1. C语言实现读取字符转换为浮点数,不使用scanf函数

    c语言读取int或者float数据,我们习惯于使用scanf函数,但是如果不使用scanf函数,该怎么实现呢. 这里就来尝试一下,不使用scanf来读取数据并转换为float类型. 下面的getflo ...

  2. oracle分组后取最新的记录

    使用Group By来实现取最新记录,需要注意一个问题,如果最大时间相同的数据都会被取出来. PS:即使数据字段类型是timestamp,也会登录相同的时间的数据. select A.* from A ...

  3. mysql升级后出现Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column 'userinfo.

    安装了mysql5.7,用group by 查询时抛出如下异常: Expression #3 of SELECT list is not in GROUP BY clause and contains ...

  4. JN_0013:win10快速回桌面

    4.最后一种方法是最为实用的方法.按快捷键[windows键+D键],如下图所示,两键同时按,或者先按住windows键不放再按D键.这种方法在任何时候都是有用的,并且熟练使用后可以达到非常快的速度: ...

  5. 数据库中查出来的时间多8小时&查询数据正常展示少8小时

    将serverTimezone的配置改为Asia/Shanghaiurl: jdbc:mysql://127.0.0.1:3306/bfc?useUnicode=true&characterE ...

  6. Java各种类

    1.Object类 equals方法 2.Date类 构造方法 成员方法 DateFormat类 Calendar类 3.System类 StringBuilder原理 构造方法 toString方法 ...

  7. 百度api识别验证码登录

    import time from selenium import webdriver from aip import AipOcr def initial(): """ ...

  8. PIE-SDK For C++栅格数据的创建

    1.功能简介 目前在地理信息领域中数据包括矢量和栅格两种数据组织形式.每一种数据有不同的数据格式,目前PIE SDK支持多种数据格式的数据创建,下面对栅格数据格式的数据创建功能进行介绍. 2.功能实现 ...

  9. react-native构建基本页面2---轮播图+九宫格

    配置首页的轮播图 轮播图官网 运行npm i react-native-swiper --save安装轮播图组件 导入轮播图组件import Swiper from 'react-native-swi ...

  10. http协议的POST传数据

    PostRequest使用StreamWriter对象写入请求流,不需要使用HttpUtility.UrlEncode显示转码,而下面的需要显示转码,还需要将参数转为字节码 蛋疼…………. publi ...