吴裕雄--天生自然TensorFlow2教程:手写数字问题实战
import tensorflow as tf
from tensorflow import keras
from keras import Sequential,datasets, layers, optimizers, metrics def preprocess(x, y):
"""数据处理函数"""
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x, y # 加载数据
(x, y), (x_test, y_test) = datasets.fashion_mnist.load_data()
print(x.shape, y.shape) # 处理train数据
batch_size = 128
db = tf.data.Dataset.from_tensor_slices((x, y))
db = db.map(preprocess).shuffle(10000).batch(batch_size) # 处理test数据
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.map(preprocess).batch(batch_size) # # 生成train数据的迭代器
db_iter = iter(db)
sample = next(db_iter)
print(f'batch: {sample[0].shape,sample[1].shape}') # 设计网络结构
model = Sequential([
layers.Dense(256, activation=tf.nn.relu), # [b,784] --> [b,256]
layers.Dense(128, activation=tf.nn.relu), # [b,256] --> [b,128]
layers.Dense(64, activation=tf.nn.relu), # [b,128] --> [b,64]
layers.Dense(32, activation=tf.nn.relu), # [b,64] --> [b,32]
layers.Dense(10) # [b,32] --> [b,10], 330=32*10+10
]) model.build(input_shape=[None, 28 * 28])
model.summary() # 调试
# w = w - lr*grad
optimizer = optimizers.Adam(lr=1e-3) # 优化器,加快训练速度 def main():
"""主运行函数"""
for epoch in range(10):
for step, (x, y) in enumerate(db):
# x:[b,28,28] --> [b,784]
# y:[b]
x = tf.reshape(x, [-1, 28 * 28])
with tf.GradientTape() as tape:
# [b,784] --> [b,10]
logits = model(x)
y_onehot = tf.one_hot(y, depth=10)
# [b]
loss_mse = tf.reduce_mean(tf.losses.MSE(y_onehot, logits))
loss_ce = tf.reduce_mean(tf.losses.categorical_crossentropy(y_onehot,logits,from_logits=True))
grads = tape.gradient(loss_ce, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if step % 100 == 0:
print(epoch, step, f'loss: {float(loss_ce),float(loss_mse)}') # test
total_correct = 0
total_num = 0
for x, y in db_test:
# x:[b,28,28] --> [b,784]
# y:[b]
x = tf.reshape(x, [-1, 28 * 28])
# [b,10]
logits = model(x)
# logits --> prob [b,10]
prob = tf.nn.softmax(logits, axis=1)
# [b,10] --> [b], int32
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
# pred:[b]
# y:[b]
# correct: [b], True: equal; False: not equal
correct = tf.equal(pred, y)
correct = tf.reduce_sum(tf.cast(correct, dtype=tf.int32))
total_correct += int(correct)
total_num += x.shape[0]
acc = total_correct / total_num
print(epoch, f'test acc: {acc}') if __name__ == '__main__':
main()
吴裕雄--天生自然TensorFlow2教程:手写数字问题实战的更多相关文章
- 吴裕雄--天生自然TensorFlow2教程:前向传播(张量)- 实战
手写数字识别流程 MNIST手写数字集7000*10张图片 60k张图片训练,10k张图片测试 每张图片是28*28,如果是彩色图片是28*28*3-255表示图片的灰度值,0表示纯白,255表示纯黑 ...
- 吴裕雄--天生自然TensorFlow2教程:函数优化实战
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def himme ...
- 吴裕雄--天生自然TensorFlow2教程:反向传播算法
- 吴裕雄--天生自然TensorFlow2教程:链式法则
import tensorflow as tf x = tf.constant(1.) w1 = tf.constant(2.) b1 = tf.constant(1.) w2 = tf.consta ...
- 吴裕雄--天生自然TensorFlow2教程:多输出感知机及其梯度
import tensorflow as tf x = tf.random.normal([2, 4]) w = tf.random.normal([4, 3]) b = tf.zeros([3]) ...
- 吴裕雄--天生自然TensorFlow2教程:单输出感知机及其梯度
import tensorflow as tf x = tf.random.normal([1, 3]) w = tf.ones([3, 1]) b = tf.ones([1]) y = tf.con ...
- 吴裕雄--天生自然TensorFlow2教程:损失函数及其梯度
import tensorflow as tf x = tf.random.normal([2, 4]) w = tf.random.normal([4, 3]) b = tf.zeros([3]) ...
- 吴裕雄--天生自然TensorFlow2教程:激活函数及其梯度
import tensorflow as tf a = tf.linspace(-10., 10., 10) a with tf.GradientTape() as tape: tape.watch( ...
- 吴裕雄--天生自然TensorFlow2教程:梯度下降简介
import tensorflow as tf w = tf.constant(1.) x = tf.constant(2.) y = x * w with tf.GradientTape() as ...
随机推荐
- OI记录
这里是蒟蒻xsl的OI记录. 2017 2017.03.?? 开始接触OI 2017.10.14 参加NOIP2017普及组初赛,踩着分数线进入了复赛 2017.11.11 参加NOIP2017普及组 ...
- 【游戏体验】Sift Heads World Act 1(暗杀行动1)
>>>点此处可试玩无敌版<<< 注意,本游戏含有少量暴力元素,13岁以下的儿童切勿尝试本款游戏 非常良心的火柴人游戏,值得一玩 个人测评 游戏性 8/10 音乐 9 ...
- Digital filter
https://ww2.mathworks.cn/help/signal/examples/practical-introduction-to-digital-filter-design.html D ...
- AC3 mantissa quantization and decoding
1.overview 所有的mantissa被quantize到固定精确度的level(有相应的bap标识)上,level小于等于15时,使用symmetric quantization.level大 ...
- mysql的数据库开放权限
链接数据库之后运行下面的命令即可 grant all PRIVILEGES on *.* to %username%@'%' identified by '%password%'; 如给root链接数 ...
- PHP 源码 —— is_array 函数源码分析
is_array 函数源码分析 本文首发于 https://github.com/suhanyujie/learn-computer/blob/master/src/function/array/is ...
- Codeforces Round #598 (Div. 3) F. Equalizing Two Strings
You are given two strings ss and tt both of length nn and both consisting of lowercase Latin letters ...
- ACM-ICPC实验室20.2.22测试-动态规划
C.田忌赛马 直接贪心做就可以~ #include<bits/stdc++.h> using namespace std; ; int a[maxn],b[maxn]; int main( ...
- Scala实现网站流量实时分析
之前已经完成zookeeper集群.Hadoop集群.HBase集群.Flume.Kafka集群.Spark集群的搭建:使用Docker搭建Spark集群(用于实现网站流量实时分析模块),且离线分析模 ...
- K8S集群搭建之软路由的安装
一.系统要求 ①镜像:win10 ②1C.4G.20G即可 ③仅主机模式(共享网卡上网) ④老毛桃PE ⑤ip为192.168.66网段(因为我设置的其他K8S节点也为该网段)---koolshare ...