╭(′▽`)╯

总之,我们都知道lca是啥,不需要任何基础也能想出来怎么用最暴力的方法求LCA,也就是深度深的点先跳到深度浅的点的同一深度,然后一起向上一步步跳。这样显然太慢了!

所以我们要用倍增,倍增比较屌,直接2^k速度往上跳,而且复杂度和树剖lca差不多,那么步骤分为两步

1.让两个点到同一深度

2.到了同一深度同步往上跳

反正我一开始看的时候一直在想,万一跳过了怎么办?哈哈哈,所以说我们有办法嘛:

定义deepv为v点的深度,设两个要求lca的点分别为a,b,且deepa >= deepb

所以,枚举找出最大的k使2^k <= deepa,这就是最大的跳的距离;

接着让他们到达同一深度:

从大到小枚举k,如果 deepa - 2^k >= deepb就往上跳2^k步,因为如果跳了2^k步的话一定deepa >= deepb

所以,我们跳的第一步一定是能跳的最大的一步,所以接下来只能跳次大的一步,同理跳完之后deepa >= deepb

......

因为k是越来越小的,k = 0的时候2^k = 1,因此无论如何最后都会以最大的效率跳到相同的深度

现在跳到了相同的深度,然后要同时向上走找到lca。

假设跳了 2 ^ k步之后它们到的位置不相等,说明lca还在深度更浅的地方,因为如果跳之后到的位置相等了,显然这个位置一定在lca的上面

所以,只要判断跳了 2 ^ k步后它们的位置如果不相等,就跳这步,这样就保证了跳到的深度一定小于lca,最后k = 0时 2 ^ k = 1,

则枚举完了k,它们所在的深度显然一定是lca的深度-1,则lca就是它们任意一个的父亲。

代码(luogu lca模板):

#include <cstdio>
#include <vector>
#include <cstring> const int MaxN = ; int n,m,s;
int par[MaxN][];
int deep[MaxN];
bool vis[MaxN]; struct Edge{
int to,nxt;
}e[MaxN*];
int head[MaxN];
int cnt; void add(int u,int v){
e[++cnt].to = v;
e[cnt].nxt = head[u];
head[u] = cnt;
} void getdeep(int u){
vis[u] = ;
for(int i = head[u]; i; i = e[i].nxt){ int to = e[i].to;
if(to == u || vis[to]) continue; par[to][] = u; deep[to] = deep[u] + ; getdeep(to); } } void getpar(){
for(int up = ; (<<up) <= n; up++){
for(int i = ; i <= n ; i++){
par[i][up] = par[par[i][up-]][up-];
} } } int lca(int u,int v){
if(deep[u] < deep[v] ) std::swap(u,v); int max_jump = -; while(<<(max_jump+) <= deep[u]) max_jump++; for(int i = max_jump; i >= ; i--){
if(deep[u] - (<<i) >= deep[v]){
u = par[u][i];
} } if(u == v)
return u; for(int i = max_jump; i >= ; i--){
if(par[u][i] != par[v][i]){
u = par[u][i];
v = par[v][i]; }
} return par[u][]; return ; } int main()
{
scanf("%d%d%d",&n,&m,&s); for(int i = ; i < n; i++ ){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
//par[v][0] = u;
//par[u][0] = v;
} deep[s] = ; getdeep(s); getpar(); for(int i = ; i <= m; i++){
int a,b;
scanf("%d%d",&a,&b);
printf("%d\n",lca(a,b)); } //par[i][j] = par[par[i][j-1]][j-1] return ;
}

【OI】倍增求LCA的更多相关文章

  1. 树上倍增求LCA(最近公共祖先)

    前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?..) 倍增求LCA: father[i][j]表示节点i往上跳 ...

  2. [算法]树上倍增求LCA

    LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...

  3. 【倍增】洛谷P3379 倍增求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  4. hdu 2586 How far away ? 倍增求LCA

    倍增求LCA LCA函数返回(u,v)两点的最近公共祖先 #include <bits/stdc++.h> using namespace std; *; struct node { in ...

  5. 倍增求lca模板

    倍增求lca模板 https://www.luogu.org/problem/show?pid=3379 #include<cstdio> #include<iostream> ...

  6. 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)

    洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...

  7. 倍增求LCA学习笔记(洛谷 P3379 【模板】最近公共祖先(LCA))

    倍增求\(LCA\) 倍增基础 从字面意思理解,倍增就是"成倍增长". 一般地,此处的增长并非线性地翻倍,而是在预处理时处理长度为\(2^n(n\in \mathbb{N}^+)\ ...

  8. 树链剖分与倍增求LCA

    树链剖分与倍增求\(LCA\) 首先我要吐槽机房的辣基供电情况,我之前写了一上午,马上就要完成的时候突然停电,然后\(GG\)成了送链剖分 其次,我没歧视\(tarjan LCA\) 1.倍增求\(L ...

  9. [学习笔记] 树上倍增求LCA

    倍增这种东西,听起来挺高级,其实功能还没有线段树强大.线段树支持修改.查询,而倍增却不能支持修改,但是代码比线段树简单得多,而且当倍增这种思想被应用到树上时,它的价值就跟坐火箭一样,噌噌噌地往上涨. ...

随机推荐

  1. 通过media媒体查询设置ie7/8样式、使用media判断各机型、手淘flexible.js

    @media all and (min-width:1280px){ /* 所有设备宽度大于1280干嘛干嘛嘞... */ body{ background:#f00; } } @media (min ...

  2. 2019-3-8-win10-uwp-一张图说明水平对齐和垂直对齐

    title author date CreateTime categories win10 uwp 一张图说明水平对齐和垂直对齐 lindexi 2019-03-08 10:45:40 +0800 2 ...

  3. BigDecimal的四则运算及小数位数格式

    一.加法 BigDecimal b1 = new BigDecimal("20");BigDecimal b2 = new BigDecimal("30");B ...

  4. 使用nodejs安装http-server

    一.下载nodejs(https://nodejs.org/) 二.在环境变量中配置nodejs路径: path: D:\Program\nodejs\ 三.打开终端: 使用node -v测试node ...

  5. 浏览器在IE8 以下时显示提示信息,提示用户升级浏览器

    <!--[if lt IE 8]> <div style="background: #eeeeee;border-bottom: 1px solid #cccccc;col ...

  6. 玩转webpack之webpack的entry output

    webpack的入口配置项表示要配置的文件就是开发环境或者生产环境 浏览器本身不能认识的一些东西必须经过webpack的编译才能认识,但是要去写的时候我们经常用到预编译什么的比如scss比如jsx甚至 ...

  7. LINQ(语言集成查询)

    LINQ,语言集成查询(Language Integrated Query)是一组用于c#和Visual Basic语言的扩展.它允许编写C#或者Visual Basic代码以查询数据库相同的方式操作 ...

  8. mybatis深入理解(四)-----MyBatis的架构设计以及实例分析

    MyBatis是目前非常流行的ORM框架,它的功能很强大,然而其实现却比较简单.优雅.本文主要讲述MyBatis的架构设计思路,并且讨论MyBatis的几个核心部件,然后结合一个select查询实例, ...

  9. 计算机组成原理(电脑硬件&语言分类)

    计算机组成原理 一.电脑硬件配置 CPU :中央处理器(人类的大脑) -飞机 内存:存放一些临时数据(人类的短暂记忆-右脑) -高铁 硬盘:存储永久数据(左脑-长期记忆) - 汽车 输入输出:键盘鼠标 ...

  10. Binder对象死亡通知机制

    本文參考<Android系统源码情景分析>,作者罗升阳. 一.Binder库(libbinder)代码:        ~/Android/frameworks/base/libs/bin ...