题目

在 \(N\times M\) 的网格中,有 \(P\) 个矩形建筑,求一个最大边长的正方形,使得网格中能找到一个放置正方形的地方,不会与建筑重合。

保证 \(N,M\le 10^6,P\le 40000\)。

个人思路(错解)

对于一个建筑 \((a,b)\) ,我们扩展出三个点 \((a,b+1),(a+1,b),(a+1,b+1)\) ,并从这三个点开始寻找最大的那个正方形。

至于如何寻找,使用类似于求最长连续 \(0\) 序列的方法,使用线段树维护。

然而这样的方法很容易说明是错的。

正解

如果有两条在 \(x\) 轴上的扫描线 \(l\) 与 \(r\),表示 \(l\sim r-1\) 之间可以放边长为 \(r-l\) 的正方形。

期望在 \(l\) 与 \(r\) 间放一个边长为 \(r-l+1\) 的矩形。

那么假如我们能在两条扫描线间找到最大空隙 \(ms\) 。

如果 \(r-l+1\le ms\),那么可以放,接下来 \(r+1\)。

如果 \(r-l+1>ms\),便不能放,因此 \(l+1\)。由于 \(l\sim r-1\) 之间可以放边长为 \(r-l\) 的正方形,\(l+1\sim r-1\) 之间便可以放边长为 \(r-l-1\) 的正方形。所以 \(r\) 不用变。

现在问题就是如何求空隙。

显然可以使用线段树,维护最大连续 \(0\)。每个位置的数代表被几个障碍包含。

当 \(r+1\) 时,加入左边界在 \(x=r\) 上的矩形。

当 \(l+1\) 时,删除右边界在 \(x=l-1\) 上的矩形。

如何维护最大连续 \(0\)?

我们可以维护 \(num,lnum,rnum\) 分别表示最大连续 \(0\),左起最大连续 \(0\),右起最大连续 \(0\)。

注意到这道题要支持区间添加与区间删减,且删减区间与添加区间一一对应,再加上一个区间只要有 \(add\) 标记那么最大连续 \(0\) 一定为 \(0\),所以我们可以不下传标记。

代码就不传了,交不了。

「题解」「JZOJ-4238」纪念碑的更多相关文章

  1. 「ZJOI2019」&「十二省联考 2019」题解索引

    「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...

  2. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  3. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  4. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  5. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  6. 【题解】「P6832」[Cnoi2020]子弦

    [题解]「P6832」[Cnoi2020]子弦第一次写月赛题解( 首先第一眼看到这题,怎么感觉要用 \(\texttt{SAM}\) 什么高科技的?结果一仔细读题,简单模拟即可. 我们不难想出,出现最 ...

  7. 「题解报告」 P3167 [CQOI2014]通配符匹配

    「题解报告」 P3167 [CQOI2014]通配符匹配 思路 *和?显然无法直接匹配,但是可以发现「通配符个数不超过 \(10\) 」,那么我们可以考虑分段匹配. 我们首先把原字符串分成多个以一个通 ...

  8. [LOJ 6031]「雅礼集训 2017 Day1」字符串

    [LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询 ...

  9. [LOJ 6030]「雅礼集训 2017 Day1」矩阵

    [LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解 ...

  10. [LOJ 6029]「雅礼集训 2017 Day1」市场

    [LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...

随机推荐

  1. ubuntu 16.04.1上安装并使用nginx

    1.安装 sudo apt-get install nginx 2.这时候应该就已经启动了,跳到步骤4. 通过命令“ps -aux | grep nginx”看下是否启动 3.如果没有启动,可以使用命 ...

  2. 解决并发问题的CAS思想及原理

      全称为:Compare and swap(比较与交换),用来解决多线程并发情况下使用锁造成性能开销的一种机制:   原理思想:CAS(V,A,B),V为内存地址,A为预期原值,B为新值.如果内存地 ...

  3. 转载:openmax基本概念

    https://yellowmax.blog.csdn.net/article/details/78080168 https://yellowmax.blog.csdn.net/article/det ...

  4. JS高级---数组和伪数组

    数组和伪数组  伪数组和数组的区别 真数组的长度是可变的 伪数组的长度不可变 function f1() { var sum = 0; for (var i = 0; i < arguments ...

  5. this 的值到底是什么?一次说清楚

    this 的值到底是什么?一次说清楚 方应杭 ​ 杭州饥人谷教育科技有限公司 CTO 1,071 人赞同了该文章 你可能遇到过这样的 JS 面试题: var obj = { foo: function ...

  6. EF中的持久化场景

    使用EF实现实体持久化(保存)到数据库有两种情况:在线场景和离线场景. 1.在线场景 在线场景中,context是上下文实例,读写都通过一个context. 这种方案适用于连接本地数据库或同一网络上的 ...

  7. 如何在vivado中调用ultraedit 编辑器

    ISE下点击菜单Edit -> Preferences -> Editor. 在Editor选项框里选择Custom,在Command line syntax文本框里输入: {C:/Pro ...

  8. C语言-字符串典型问题分析

    1.典型问题一 下面的程序输出什么为什么? #include <stdio.h>      int main()   {       ] = {};       char src[] =  ...

  9. BigInteger和BigDecimal的基本用法

    整型大数 BigInteger: import java.math.BigInteger; import java.util.Scanner; public class Main { public s ...

  10. IIS的部署

    https://blog.csdn.net/miner_k/article/details/69388726 https://blog.csdn.net/miner_k/article/details ...