题目

在 \(N\times M\) 的网格中,有 \(P\) 个矩形建筑,求一个最大边长的正方形,使得网格中能找到一个放置正方形的地方,不会与建筑重合。

保证 \(N,M\le 10^6,P\le 40000\)。

个人思路(错解)

对于一个建筑 \((a,b)\) ,我们扩展出三个点 \((a,b+1),(a+1,b),(a+1,b+1)\) ,并从这三个点开始寻找最大的那个正方形。

至于如何寻找,使用类似于求最长连续 \(0\) 序列的方法,使用线段树维护。

然而这样的方法很容易说明是错的。

正解

如果有两条在 \(x\) 轴上的扫描线 \(l\) 与 \(r\),表示 \(l\sim r-1\) 之间可以放边长为 \(r-l\) 的正方形。

期望在 \(l\) 与 \(r\) 间放一个边长为 \(r-l+1\) 的矩形。

那么假如我们能在两条扫描线间找到最大空隙 \(ms\) 。

如果 \(r-l+1\le ms\),那么可以放,接下来 \(r+1\)。

如果 \(r-l+1>ms\),便不能放,因此 \(l+1\)。由于 \(l\sim r-1\) 之间可以放边长为 \(r-l\) 的正方形,\(l+1\sim r-1\) 之间便可以放边长为 \(r-l-1\) 的正方形。所以 \(r\) 不用变。

现在问题就是如何求空隙。

显然可以使用线段树,维护最大连续 \(0\)。每个位置的数代表被几个障碍包含。

当 \(r+1\) 时,加入左边界在 \(x=r\) 上的矩形。

当 \(l+1\) 时,删除右边界在 \(x=l-1\) 上的矩形。

如何维护最大连续 \(0\)?

我们可以维护 \(num,lnum,rnum\) 分别表示最大连续 \(0\),左起最大连续 \(0\),右起最大连续 \(0\)。

注意到这道题要支持区间添加与区间删减,且删减区间与添加区间一一对应,再加上一个区间只要有 \(add\) 标记那么最大连续 \(0\) 一定为 \(0\),所以我们可以不下传标记。

代码就不传了,交不了。

「题解」「JZOJ-4238」纪念碑的更多相关文章

  1. 「ZJOI2019」&「十二省联考 2019」题解索引

    「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...

  2. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  3. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  4. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  5. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  6. 【题解】「P6832」[Cnoi2020]子弦

    [题解]「P6832」[Cnoi2020]子弦第一次写月赛题解( 首先第一眼看到这题,怎么感觉要用 \(\texttt{SAM}\) 什么高科技的?结果一仔细读题,简单模拟即可. 我们不难想出,出现最 ...

  7. 「题解报告」 P3167 [CQOI2014]通配符匹配

    「题解报告」 P3167 [CQOI2014]通配符匹配 思路 *和?显然无法直接匹配,但是可以发现「通配符个数不超过 \(10\) 」,那么我们可以考虑分段匹配. 我们首先把原字符串分成多个以一个通 ...

  8. [LOJ 6031]「雅礼集训 2017 Day1」字符串

    [LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询 ...

  9. [LOJ 6030]「雅礼集训 2017 Day1」矩阵

    [LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解 ...

  10. [LOJ 6029]「雅礼集训 2017 Day1」市场

    [LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...

随机推荐

  1. Java参数传递是值传递还是引用传递?

    当一个对象被当作参数传递到一个方法后,在此方法内可以改变这个对象的属性,那么这里到底是值传递还是引用传递? 答:是值传递.Java 语言的参数传递只有值传递.当一个实例对象作为参数被传递到方法中时,参 ...

  2. VSCode常用插件之EditorConfig for vs code 使用

    更多VSCode插件使用请访问:VSCode常用插件汇总 当大家在公司工作时,不可能永远是一个人维护一个项目,当多个人参与一个项目,每个人使用的编辑器不一样,代码风格自然也不一样,那么如何让使用不同编 ...

  3. pytest-pytest-html生成HTML测试报告

    pytest-HTML是一个插件,pytest用于生成测试结果的HTML报告.兼容Python 2.7,3.6 pytest-html 1.github上源码地址[https://github.com ...

  4. Codeforces 474B. Worms

    It is lunch time for Mole. His friend, Marmot, prepared him a nice game for lunch. Marmot brought Mo ...

  5. 微信小程序open-data userAvatarUrl圆角显示

    从年初开始,打开小程序,工具栏都会弹出这个提醒: 也就是,默认不弹出授权询问框,默认获取不到用户信息(头像.昵称等)! 如果你需要用到这个接口,可以尝试以下方法: 1.用 button 组件,将属性名 ...

  6. 剖析Javascript中forEach()底层原理,如何重写forEach()

    我们平时用的forEach()一般是这样用的 var myArr = [1,5,8] myArr.forEach((v,i)=>{ console.log(v,i) })//运行后是这样的1 0 ...

  7. Mac下Charles的安装和配置

    一.安装与破解 官网下载,破解方法参考其他,此处略 二.配置 1.电脑端安装 Charles 的根证书 注意:此时钥匙串默认为不信任,需设置为始终信任 2.配置代理:勾选enable transpre ...

  8. react 和 vue 的优缺点总结

    React推广了Virtual DOM并创造了新的语法——JSX,JSX允许开发者在JavaScript中书写HTML Vue使用模板系统而不是JSX,但能对现有应用的升级更加容易,这是因为模板用的就 ...

  9. AcWing 1010. 拦截导弹

    //贪心加dp #include<iostream> using namespace std ; ; int n; int q[N]; int f[N]; int g[N];//存每个序列 ...

  10. [USACO19OPEN]I Would Walk 500 Miles 贪心

    题目 洛谷P5425(点击可跳转) 题目描述 Farmer John想要将他的编号为 \(1 \ldots N\)的 N N 头奶牛( \(N \leq 7500\) )分为非空的 \(K\) 组( ...