最小生成树(一)kruskal
今天写一篇关于最小生成树的番外篇,以前写最小生成树总是用的prim,关于kruskal只是知道一些原理,一直也没有时间去学,今天偶然看了一些并查集,才想起了这个算法
会想起刚刚(预)学过的数据结构,来解释一下它的原理:
先构造一个只含 n 个顶点、而边集为空的子图,把子图中各个顶点看成各棵树上的根结点,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,即把两棵树合成一棵树,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有 n-1 条边为止。-------百度百科
通俗一点讲,给定加权无向图G(E,V),将所有边取出只留下点集,然后边按权值从小到大排序后,加入点集中对应该条边原本连接的点的关系,每加入一条边,都要检查加入这条边后是否会与之前加入的边构成环,如果成环,则该边不可取,进行下一条边的的判断,当加入n-1(图有n个顶点)条边后,最小生成树毕.
证明(摘自百度百科):
- 这样的步骤保证了选取的每条边都是桥,因此图G构成一个树。
- 为什么这一定是最小生成树呢?关键还是步骤3中对边的选取。算法中总共选取了n-1条边,每条边在选取的当时,都是连接两个不同的连通分量的权值最小的边
- 要证明这条边一定属于最小生成树,可以用反证法:如果这条边不在最小生成树中,它连接的两个连通分量最终还是要连起来的,通过其他的连法,那么另一种连法与这条边一定构成了环,而环中一定有一条权值大于这条边的边,用这条边将其替换掉,图仍旧保持连通,但总权值减小了。也就是说,如果不选取这条边,最后构成的生成树的总权值一定不会是最小的。
时间复杂度:(eloge)e为边数,这里一定要分清.
#include <bits/stdc++.h>
using namespace std;
struct node{
int x;
int y;
int w;
}e[];
int f[];
int n,m,total;
bool camp(node a,node b)//sort()重载函数
{
return a.w<b.w;
}
int find(int x)//并查
{
if(f[x]==x)
{
return x;
}
else
{
f[x]=find(f[x]);
return f[x];
}
}
int kruskal()
{
for(int i=;i<=m;i++)
{
int u=find(e[i].x);
int v=find(e[i].y);
if(u!=v)//如果不在一个集合中
{
total+=e[i].w;
f[u]=v;
n--;
if(n==)//加够了n-1条边
break;
}
}
return total;
}
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++)
f[i]=i;
for(int i=;i<=m;i++)
{
int x,y,z;
cin>>x>>y>>z;
e[i].x=x;
e[i].y=y;
e[i].w=z;
}
sort(e+,e+m+,camp);
kruskal();
if(n==)
cout<<total<<endl;
else//不能构成最小生成树
cout<<"orz"<<endl;
return ;
}
最小生成树(一)kruskal的更多相关文章
- 最小生成树的Kruskal算法实现
最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...
- 最小生成树之Kruskal
模板题,学习一下最小生成树的Kruskal算法 对于一个连通网(连通带权图,假定每条边上的权均为大于零的实数)来说,每棵树的权(即树中所有边的权值总和)也可能不同 具有权最小的生成树称为最小生成树 生 ...
- ZOJ 1203 Swordfish 旗鱼 最小生成树,Kruskal算法
主题链接:problemId=203" target="_blank">ZOJ 1203 Swordfish 旗鱼 Swordfish Time Limit: 2 ...
- 经典问题----最小生成树(kruskal克鲁斯卡尔贪心算法)
题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...
- 最小生成树 Prim Kruskal
layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...
- 数据结构与算法--最小生成树之Kruskal算法
数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中 ...
- HDU 1598 find the most comfortable road(最小生成树之Kruskal)
题目链接: 传送门 find the most comfortable road Time Limit: 1000MS Memory Limit: 32768 K Description XX ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 数据结构学习笔记05图(最小生成树 Prim Kruskal)
最小生成树Minimum Spanning Tree 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 树: 无回路 |V|个顶 ...
- HDU1875——畅通工程再续(最小生成树:Kruskal算法)
畅通工程再续 Description相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖,发展首先要解决的问题当 ...
随机推荐
- 「洛谷P1306」斐波那契公约数 解题报告
P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很"简单"问题:第n项和第m项的最大公 ...
- flask 中的 werkzeug Local,LocalStack 和 LocalProxy 技术应用
什么是 Local wsgi 每次请求,会把过程进行抽离无状态话,过程数据存储在本次请求的全局变量中,使用到了Local. Local 作为每次请求的全局命令空间,属于每次请求的私有 LocalSta ...
- schedule of 2016-10-24~2016-10-30(Monday~Sunday)——1st semester of 2nd Grade
2016/10/24 Monday forcus:find a way to try to recognize emotions in database2.0(see ppt Week 7) 1.pr ...
- cometoj 茶颜悦色|扫描线+懒惰标记
传送门 题目描述 茶颜悦色也太好喝了!鸡尾酒在长沙的各种茶颜悦色的店铺中流连忘返.他发现长沙有炒鸡多的茶颜悦色店,走两步就能遇到一家. “方圆一公里能有十家茶颜悦色!”鸡尾酒感叹了起来. 于是他想到了 ...
- 【笔试/面试题】中科创达——9.28(持续更新ing)
1. 线程与进程的区别 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独 ...
- ST表竞赛模板
void RMQ_init(){//ST表的创建模板 ;i<n;i++) d[i][]=mo[i]; ;(<<j)<=n;j++) ;i+(<<j)-<n;i ...
- dp - 求符合题意的序列的个数
The sequence of integers a1,a2,…,ak is called a good array if a1=k−1 and a1>0. For example, the s ...
- 引用类型(C# 参考)
C# 中有两种类型:引用类型和值类型. 引用类型的变量存储对其数据(对象)的引用,而值类型的变量直接包含其数据. 对于引用类型,两种变量可引用同一对象:因此,对一个变量执行的操作会影响另一个变量所引用 ...
- 三分钟带你入门GitHub
一,首先,我们来说一下什么是GitHub GitHub是一个基于git打造的开源社区 ,同时也是一个大型同性交友平台 ,作为一个专业的程序员,你非常有必要知道并使用GitHub:作为一个国际化社区,所 ...
- Java入门 - 面向对象 - 01.继承
原文地址:http://www.work100.net/training/java-inheritance.html 更多教程:光束云 - 免费课程 继承 序号 文内章节 视频 1 概述 2 继承的特 ...