最小生成树(一)kruskal
今天写一篇关于最小生成树的番外篇,以前写最小生成树总是用的prim,关于kruskal只是知道一些原理,一直也没有时间去学,今天偶然看了一些并查集,才想起了这个算法
会想起刚刚(预)学过的数据结构,来解释一下它的原理:
先构造一个只含 n 个顶点、而边集为空的子图,把子图中各个顶点看成各棵树上的根结点,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,即把两棵树合成一棵树,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有 n-1 条边为止。-------百度百科
通俗一点讲,给定加权无向图G(E,V),将所有边取出只留下点集,然后边按权值从小到大排序后,加入点集中对应该条边原本连接的点的关系,每加入一条边,都要检查加入这条边后是否会与之前加入的边构成环,如果成环,则该边不可取,进行下一条边的的判断,当加入n-1(图有n个顶点)条边后,最小生成树毕.
证明(摘自百度百科):
- 这样的步骤保证了选取的每条边都是桥,因此图G构成一个树。
- 为什么这一定是最小生成树呢?关键还是步骤3中对边的选取。算法中总共选取了n-1条边,每条边在选取的当时,都是连接两个不同的连通分量的权值最小的边
- 要证明这条边一定属于最小生成树,可以用反证法:如果这条边不在最小生成树中,它连接的两个连通分量最终还是要连起来的,通过其他的连法,那么另一种连法与这条边一定构成了环,而环中一定有一条权值大于这条边的边,用这条边将其替换掉,图仍旧保持连通,但总权值减小了。也就是说,如果不选取这条边,最后构成的生成树的总权值一定不会是最小的。
时间复杂度:(eloge)e为边数,这里一定要分清.
#include <bits/stdc++.h>
using namespace std;
struct node{
int x;
int y;
int w;
}e[];
int f[];
int n,m,total;
bool camp(node a,node b)//sort()重载函数
{
return a.w<b.w;
}
int find(int x)//并查
{
if(f[x]==x)
{
return x;
}
else
{
f[x]=find(f[x]);
return f[x];
}
}
int kruskal()
{
for(int i=;i<=m;i++)
{
int u=find(e[i].x);
int v=find(e[i].y);
if(u!=v)//如果不在一个集合中
{
total+=e[i].w;
f[u]=v;
n--;
if(n==)//加够了n-1条边
break;
}
}
return total;
}
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++)
f[i]=i;
for(int i=;i<=m;i++)
{
int x,y,z;
cin>>x>>y>>z;
e[i].x=x;
e[i].y=y;
e[i].w=z;
}
sort(e+,e+m+,camp);
kruskal();
if(n==)
cout<<total<<endl;
else//不能构成最小生成树
cout<<"orz"<<endl;
return ;
}
最小生成树(一)kruskal的更多相关文章
- 最小生成树的Kruskal算法实现
最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...
- 最小生成树之Kruskal
模板题,学习一下最小生成树的Kruskal算法 对于一个连通网(连通带权图,假定每条边上的权均为大于零的实数)来说,每棵树的权(即树中所有边的权值总和)也可能不同 具有权最小的生成树称为最小生成树 生 ...
- ZOJ 1203 Swordfish 旗鱼 最小生成树,Kruskal算法
主题链接:problemId=203" target="_blank">ZOJ 1203 Swordfish 旗鱼 Swordfish Time Limit: 2 ...
- 经典问题----最小生成树(kruskal克鲁斯卡尔贪心算法)
题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...
- 最小生成树 Prim Kruskal
layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...
- 数据结构与算法--最小生成树之Kruskal算法
数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中 ...
- HDU 1598 find the most comfortable road(最小生成树之Kruskal)
题目链接: 传送门 find the most comfortable road Time Limit: 1000MS Memory Limit: 32768 K Description XX ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 数据结构学习笔记05图(最小生成树 Prim Kruskal)
最小生成树Minimum Spanning Tree 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 树: 无回路 |V|个顶 ...
- HDU1875——畅通工程再续(最小生成树:Kruskal算法)
畅通工程再续 Description相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖,发展首先要解决的问题当 ...
随机推荐
- Java网络编程——TCP图片上传
1.编写一个服务器端程序,用来接收图片.创建一个监听指定端口号的ServerSocket服务端对象,在while(true)无限循环中持续调用ServerSocket的accept()方法来接收客户端 ...
- 鼠标右键新建Markdown文档
首先放一张github某项目中.md文件中的内容图片 Windows系统下,使用 Typora 软件来进入Markdown文档的编写非常容易,而且入门门槛非常的低 存在的问题: 习惯了使用Markdo ...
- 【Java基础总结】多线程
1. 实现多线程的两种方式 //第一种:继承Thread类,重写run()方法 class ThreadTest1 extends Thread{ public void run(){ String ...
- Lua表(table)的个人总结
1.表的简介和构造 table是个很强大且神奇的东西,又可以作为数组和字典,又可以当作对象,设置module.它是由数组和哈希表结合的实现的.他的key可以是除nil以外任意类型的值,key为整数时, ...
- Map2Shp软件字符编码解决方案——彻底杜绝Shape格式乱码
在使用Shape文件时,如果里面有中文属性信息时,经常会遇到属性信息变为乱码.尤其是ArcGIS10.2.1之后,Esri改变了软件的默认字符编码规则,打开之前保存的Shapefile文件,总会不时遇 ...
- Redis 通配符批量删除key
问题: 线上有部分的redis key需要清理. 一. 由于Keys模糊匹配,请大家在实际运用的时候忽略掉.因为Keys会引发Redis锁,并且增加Redis的CPU占用,情况是很恶劣的, 官网说明如 ...
- JPQ整合Querydsl入门篇
# JPQ整合Querydsl入门篇 不知道你们喜不喜欢用JPA ,我本人是很喜欢 不要和我说JPA不适合复杂查询等等的,你要知道现在都是微服务,只要你服务器拆分够细表设计够合理,都是服务之间调能用 ...
- 树 dfs暴力判环 题意转化
以后还是要多做题啊 这一道题我把题目想的太简单了 用并查集做了一波 但是忘了一种情况 就是同一个树上可能会有环 这就不太对了 而且还不要忘了 一棵树的根节点是一个自环 也就是说这一题的答案就是 ...
- 19徐州网络赛E 线段树加离散化
题目链接:https://nanti.jisuanke.com/t/41387 按wi的值建立权值线段树维护值为wi出现的最后位置,对于第i个人的答案,查询线段树[wi+m,max]区间的最大位置po ...
- 20191014Java课堂记录
1. Java字段初始化的规律 首先执行类成员定义时指定的默认值或类的初始化块,到底执行哪一个要看哪一个“排在前面”. 其次执行类的构造函数. 类的初始化块不接收任何的参数,而且只要一创建类的对象,它 ...