一、感知机(Perception)

1.1 原理:

感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1,属于判别模型。

假设训练数据集是线性可分的,感知机学习的目标是求得一个能够将训练数据集正实例点和负实例点完全正确分开的分离超平面。如果是非线性可分的数据,则最后无法获得超平面。

1.2 感知机模型

感知机从输入空间到输出空间的模型如下:

                  

1.3 求解

思想:错误驱动

损失函数:期望使错误分类的所有样本,到超平面的距离之和最小

  (其中M集合是误分类点的集合)

学习算法:SGD(随机梯度下降)

  感知机学习算法是对上述损失函数进行极小化,求得w和b。但是用普通的基于所有样本的梯度和的均值的批量梯度下降法(BGD)是行不通的,原因在于我们的损失函数里面有限定,只有误分类的M集合里面的样本才能参与损失函数的优化。所以我们不能用最普通的批量梯度下降,只能采用随机梯度下降(SGD)。目标函数如下:

原始形式算法:

1.4 训练过程

线性可分的过程 线性不可分的过程

1.5 小结

感知机算法是一个简单易懂的算法,它是很多算法的鼻祖,比如支持向量机算法,神经网络与深度学习。因此虽然它现在已经不是一个在实践中广泛运用的算法,还是值得好好的去研究一下。感知机算法对偶形式为什么在实际运用中比原始形式快,也值得好好去体会。

参考文献

1. 感知机原理(Perceptron)

机器学习理论基础学习3.1--- Linear classification 线性分类之感知机PLA(Percetron Learning Algorithm)的更多相关文章

  1. 【cs231n】图像分类-Linear Classification线性分类

    [学习自CS231n课程] 转载请注明出处:http://www.cnblogs.com/GraceSkyer/p/8824876.html 之前介绍了图像分类问题.图像分类的任务,就是从已有的固定分 ...

  2. 机器学习理论基础学习12---MCMC

    作为一种随机采样方法,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,以下简称MCMC)在机器学习,深度学习以及自然语言处理等领域都有广泛的应用,是很多复杂算法求解的基础.比如分 ...

  3. 机器学习理论基础学习14.1---线性动态系统-卡曼滤波 Kalman filter

    一.背景 动态模型 = 图 + 时间 动态模型有三种:HMM.线性动态系统(kalman filter).particle filter 线性动态系统与HMM的区别是假设相邻隐变量之间满足线性高斯分布 ...

  4. 机器学习理论基础学习3.2--- Linear classification 线性分类之线性判别分析(LDA)

    在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题 ...

  5. 机器学习理论基础学习3.3--- Linear classification 线性分类之logistic regression(基于经验风险最小化)

    一.逻辑回归是什么? 1.逻辑回归 逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的. logistic回归也称为逻辑回归,与线性回归这样输出 ...

  6. 机器学习理论基础学习3.5--- Linear classification 线性分类之朴素贝叶斯

    一.什么是朴素贝叶斯? (1)思想:朴素贝叶斯假设    条件独立性假设:假设在给定label y的条件下,特征之间是独立的    最简单的概率图模型 解释: (2)重点注意:朴素贝叶斯 拉普拉斯平滑 ...

  7. 机器学习理论基础学习3.4--- Linear classification 线性分类之Gaussian Discriminant Analysis高斯判别模型

    一.什么是高斯判别模型? 二.怎么求解参数?

  8. 机器学习理论基础学习17---贝叶斯线性回归(Bayesian Linear Regression)

    本文顺序 一.回忆线性回归 线性回归用最小二乘法,转换为极大似然估计求解参数W,但这很容易导致过拟合,由此引入了带正则化的最小二乘法(可证明等价于最大后验概率) 二.什么是贝叶斯回归? 基于上面的讨论 ...

  9. 机器学习理论基础学习4--- SVM(基于结构风险最小化)

    一.什么是SVM? SVM(Support Vector Machine)又称为支持向量机,是一种二分类的模型.当然如果进行修改之后也是可以用于多类别问题的分类.支持向量机可以分为线性和非线性两大类. ...

随机推荐

  1. 【错误整理】ora-00054:resource busy and acquire with nowait specified解决方法【转】

    当某个数据库用户在数据库中插入.更新.删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait ...

  2. Linux 下如何安装 .bin 文件

    拿到 .bin 文件,在文件所在目录下执行如下命令即可安装, ./your-file-name.bin 如果提示 “没有那个文件或目录” ,给它加上执行权限即可,执行如下命令, chmod +x ./ ...

  3. [转]mii-tool与ethtool的用法详解

    1.mii-tool 配置网络设备协商方式的工具: 感谢原文作者!原文地址:http://blog.chinaunix.net/uid-20639775-id-154546.html 1.1 mii- ...

  4. 1007: [HNOI2008]水平可见直线[维护下凸壳]

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2741[Submit][Sta ...

  5. 跟bWAPP学WEB安全(PHP代码)--SSL(Server-Side-Include)漏洞

    什么是Server-Side-Include漏洞 服务端包含漏洞是指发送指令到服务器,服务器会将指令运行完,把运行结果包含在返回文件中发送给你.利用这种漏洞可以获取服务端的信息甚至执行命令,这样的指令 ...

  6. 关于Jmeter3.0,你必须要知道的5点变化

    2016.5.18日,Apache 发布了jmeter 3.0版本,本人第一时间上去查看并下载使用了,然后群里或同事都会问有什么样变化呢?正好在网上看到一遍关于3.0的文章,但是是英文的.这里翻译一下 ...

  7. mysql概要(六)连接(内连接,左,右外连接

    内连接 [join on / from 表1,表二 ]效果一样 区别是:可以理解为首先取得笛卡儿积后,再匹配/还是根据条件获得笛卡尔积 内连接:取俩表的交叉匹配数据:(mysql 内连接 左连接 右连 ...

  8. MVC4.0 IIS 7.5 详细错误 - 404.0 - Not Found

    出现环境:win7 + IIS7.5 问题如下: 1.IIS的根节点->右侧“ISAPI和CGI限制”->把禁止的DotNet版本项设置为允许 如果不行就进行下一步 2.选择站点-> ...

  9. Java 8新增的Lambda表达式

    一. 表达式入门 Lambda表达式支持将代码块作为方法参数,lambda表达式允许使用更简洁的代码来创建只有一个抽象方法的接口(这种接口被称为函数式接口)的实例,相当于一个匿名的方法. 1.1 La ...

  10. CodeForces 832B Petya and Exam

    B. Petya and Exam time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...