理解HBase(一个开源的Google的BigTable实际应用)最大的困难是HBase的数据结构概念究竟是什么?首先HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库.另一个不同的是HBase基于列的而不是基于行的模式.

Google's BigTable论文 清楚地解释了什么是BigTable:
Bigtable是一个疏松的分布式的持久的多维排序的map,这个map被行键,列键,和时间戳索引.每一个值都是连续的byte数组.(A
Bigtable is a sparse, distributed, persistent multidimensional sorted
map. The map is indexed by a row key, column key, and a timestamp; each
value in the map is an uninterpreted array of bytes.)

Hadoop wiki的HBase架构 页面提到:
HBase使用和Bigtable非常相同的数据模型.用户存储数据行在一个表里.一个数据行拥有一个可选择的键和任意数量的列.表是疏松的存储的,因此
用户可以给行定义各种不同的列.(HBase uses a data model very similar to that of
Bigtable. Users store data rows in labelled tables. A data row has a
sortable key and an arbitrary number of columns. The table is stored
sparsely, so that rows in the same table can have crazily-varying
columns, if the user likes.)

一、架构思路

Hbase是基于Hadoop的项目,所以一般情况下我们使用的直接就是HDFS文件系统,这里我们不深谈HDFS如何构造其分布式的文件系统,只需要知 道虽然Hbase中有多个RegionServer的概念,并不意味着数据是持久化在RegionServer上的,事实上,RegionServer是 调度者,管理Regions,但是数据是持久化在HDFS上的。明确这一点,在后面的讨论中,我们直接把文件系统抽象为HDFS,不再深究。

Hbase是一个分布式的数据库,使用Zookeeper来管理集群。在架构层面上分为Master(Zookeeper中的leader)和多个RegionServer,基本架构如图:

在Hbase的概念中,RegionServer对应于集群中的一个节点,而一个RegionServer负责管理多个Region。一个Region代
表一张表的一部分数据,所以在Hbase中的一张表可能会需要很多个Region来存储其数据,但是每个Region中的数据并不是杂乱无章
的,Hbase在管理Region的时候会给每个Region定义一个Rowkey的范围,落在特定范围内的数据将交给特定的Region,从而将负载分
摊到多个节点上,充分利用分布式的优点。另外,Hbase会自动的调节Region处在的位置,如果一个RegionServer变得Hot(大量的请求
落在这个Server管理的Region上),Hbase就会把Region移动到相对空闲的节点,依次保证集群环境被充分利用。

二、存储模型

有了架构层面的保证,接下来的事情就只是关注于数据的具体存储了。这里就是每个Region所承担的工作了。我们知道一个Region代表的是一张
Hbase表中特定Rowkey范围内的数据,而Hbase是面向列存储的数据库,所以在一个Region中,有多个文件来存储这些列。Hbase中数据
列是由列簇来组织的,所以每一个列簇都会有对应的一个数据结构,Hbase将列簇的存储数据结构抽象为Store,一个Store代表一个列簇。


     所以在这里也可以看出为什么在我们查询的时候要尽量减少不需要的列,而经常一起查询的列要组织到一个列簇里:因为要需要查询的列簇越多,意味着要扫描越多的Store文件,这就需要越多的时间。

我们来深入Store中存储数据的方式。Hbase的实现是用了一种LSM 树的结构!

LSM树是由B+树改进而来,所以我们首先来简单的看看B+树。

这是一颗简单的B+树,含义不言而喻,这里不多分析,但是这种数据结构并不适合Hbase中的应用场景。这样的数据结构在内存中效率是很高的,但是
Hbase中数据是存储在文件中的,如果按照这样的结构来存储,意味着我们每一次插入数据都要由一级索引找到文件再在文件中间作操作来保证数据的有序性,
这无疑是效率低下的。所以Hbase采用的是LSM树的结构,这种结构的关键是,每一次的插入操作都会先进入MemStore(内存缓冲区),当
MemStore达到上限的时候,Hbase会将内存中的数据输出为有序的StoreFile文件数据(根据Rowkey、版本、列名排序,这里已经和列
簇无关了因为Store里都属于同一个列簇)。这样会在Store中形成很多个小的StoreFile,当这些小的File数量达到一个阀值的时
候,Hbase会用一个线程来把这些小File合并成一个大的File。这样,Hbase就把效率低下的文件中的插入、移动操作转变成了单纯的文件输出、
合并操作。

由上可知,在Hbase底层的Store数据结构中,每个StoreFile内的数据是有序的,但是StoreFile之间不一定是有序的,Store只
需要管理StoreFile的索引就可以了。这里也可以看出为什么指定版本和Rowkey可以加强查询的效率,因为指定版本和Rowkey的查询可以利用
StoreFile的索引跳过一些肯定不包含目标数据的数据。

HBase vs Cassandra

  HBase Cassandra
语言 Java Java
出发点 BigTable BigTable and Dynamo
License Apache Apache
Protocol HTTP/REST (also Thrift) Custom, binary (Thrift)
数据分布 表划分为多个region存在不同region server上 改进的一致性哈希(虚拟节点)
存储目标 大文件 小文件
一致性 强一致性 最终一致性,Quorum NRW策略
架构 master/slave p2p
高可用性 NameNode是HDFS的单点故障点 P2P和去中心化设计,不会出现单点故障
伸缩性 Region Server扩容,通过将自身发布到Master,Master均匀分布Region 扩容需在Hash Ring上多个节点间调整数据分布
读写性能 数据读写定位可能要通过最多6次的网络RPC,性能较低。 数据读写定位非常快
数据冲突处理 乐观并发控制(optimistic concurrency control) 向量时钟
临时故障处理 Region Server宕机,重做HLog 数据回传机制:某节点宕机,hash到该节点的新数据自动路由到下一节点做 hinted handoff,源节点恢复后,推送回源节点。
永久故障恢复 Region Server恢复,master重新给其分配region Merkle 哈希树,通过Gossip协议同步Merkle Tree,维护集群节点间的数据一致性
成员通信及错误检测 Zookeeper 基于Gossip
CAP 1,强一致性,0数据丢失。2,可用性低。3,扩容方便。 1,弱一致性,数据可能丢失。2,可用性高。3,扩容方便。

转自:https://yq.aliyun.com/articles/25706

HBase底层存储原理——我靠,和cassandra本质上没有区别啊!都是kv 列存储,只是一个是p2p另一个是集中式而已!的更多相关文章

  1. ES transport client底层是netty实现,netty本质上是异步方式,但是netty自身可以使用sync或者await(future超时机制)来实现类似同步调用!因此,ES transport client可以同步调用也可以异步(不过底层的socket必然是异步实现)

    ES transport client底层是netty实现,netty本质上是异步方式,但是netty自身可以使用sync或者await(future超时机制)来实现类似同步调用! 因此,ES tra ...

  2. Jsp与servlet本质上的区别

    1.jsp经编译后就变成了Servlet.(JSP的本质就是Servlet,JVM只能识别java的类,不能识别JSP的代码,Web容器将JSP的代码编译成JVM能够识别的java类)2.jsp更擅长 ...

  3. FreeBSD与Linux十个本质上的区别

    Linux的标志是一只十分可爱的小企鹅,而FreeBSD的标志是一个拿着叉子的小恶魔.你是否经常会听到人们把 Linux及 BSD 系统混为一谈?是的,我有时会经常听到一些新手,甚至于媒体都这么说.当 ...

  4. HBase底层存储原理

    HBase底层存储原理——我靠,和cassandra本质上没有区别啊!都是kv 列存储,只是一个是p2p另一个是集中式而已! 首先HBase不同于一般的关系数据库, 它是一个适合于非结构化数据存储的数 ...

  5. SQL Server 列存储索引 第二篇:设计

    列存储索引可以是聚集的,也可以是非聚集的,用户可以在表上创建聚集的列存储索引(Clustered Columnstore Index)或非聚集的列存储索引(Nonclustered Columnsto ...

  6. synchronized底层实现原理&CAS操作&偏向锁、轻量级锁,重量级锁、自旋锁、自适应自旋锁、锁消除、锁粗化

    进入时:monitorenter 每个对象有一个监视器锁(monitor).当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,过程如下:1 ...

  7. HBase与列存储

    传统的行存储和(HBase)列存储的区别 1.为什么要按列存储 列式存储(Columnar or column-based)是相对于传统关系型数据库的行式存储(Row-basedstorage)来说的 ...

  8. synchronized的底层实现原理

    转自:http://www.cnblogs.com/paddix/p/5367116.html 如果对上面的执行结果还有疑问,也先不用急,我们先来了解Synchronized的原理,再回头上面的问题就 ...

  9. 在SQL Server 2014里可更新的列存储索引 (Updateable Column Store Indexes)

    传统的关系数据库服务引擎往往并不是对超大量数据进行分析计算的最佳平台,为此,SQL Server中开发了分析服务引擎去对大笔数据进行分析计算.当然,对于数据的存放平台SQL Server数据库引擎而言 ...

随机推荐

  1. mysql 使用存储引擎

    三 使用存储引擎 方法1:建表时指定引擎 指定innodb,不写默认也是innodb use 数据库先 create table innodb_t1(id int,name char)engine=i ...

  2. 前端 HTML body标签相关内容 常用标签 图片标签 <img/>

    图片标签 <img/> 一个网页除了有文字,还会有图片.我们使用<img/>标签在网页中插入图片. <img/> 是单闭合标签 语法:<img src=&qu ...

  3. 010-mac下常用命令

    1.查看某个端口是否运行 lsof -i tcp:port lsof -i:8080 2.强制关闭进程 kill -9 PID

  4. checkbox选择

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  5. vs2010用NuGet(程序包管理)安装EF失败之解决办法

    今天用程序包管理控制台安装EF.报错.如下

  6. Mysql查询一个表的所有字段名

    select COLUMN_NAME from information_schema.`COLUMNS`        -- 这行不变,照抄 where TABLE_SCHEMA = 'xerp'   ...

  7. php 截取字符串第一个字符,截取掉字符串最后一个字符的方法

    php 截取字符串第一个字符,php截取掉字符串最后一个字符的方法: $frist = substr( $c_url, 0, 1 ); $delete_last = substr(base_url() ...

  8. idea生成springboot jpa的实体对象

    在idea的database里面添加上数据库 File-->Project Structure Modules--->点击加号----->选择JPA  选择确认之后再主面板上就会出现 ...

  9. 5G频谱到底有多值钱?

    继9月召开5G峰会并发布“5GFAST”战略后,美国于当地时间11月14日正式启动5G频谱拍卖.“这些频谱对于部署5G服务和应用程序至关重要,而我们并没有就此止步.”美国联邦通信委员会(FCC)主席A ...

  10. 简单的HTML5 canvas游戏工作原理

    HTML5已经不是一个新名词.它看上去很cool,有很多feature,大多数人普遍看好它的发展.对于我来说,最感兴趣的是它的canvas标签,可以结合Javascript来绘制游戏画面. 我们可以在 ...