石子合并(一)

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
 
描述
    有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
 
输入
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
输出总代价的最小值,占单独的一行
样例输入
3
1 2 3
7
13 7 8 16 21 4 18
样例输出
9
239 区间dp,无论有多少堆石子,最后总要是分成了两堆,然后合成这两堆,我们要求出最小消耗值。
dp[start][end]表示取走start到end位置的石子的最小消耗值,
我们假设子问题答案已经求出,则有:dp[i][j]=MIN{dp[i][k]+dp[k+1][j]+SUM(i,j)|i<=k<j}
不难发现要想求出长度为len的区间的最小值,我们需要长度为(1---len-1)之间的最小值作为支撑递推继续下去的源泉,
所有想到,从长度为1开始递推直至推到长度为n也就是answer!
显然是一个O(N^3)复杂度的DP,有四边形优化为O(N^2),目前不会,以后补。

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
int a[205],dp[205][205];
int sum[205][205];
int SUM(int s,int e)
{
if(sum[s][e]!=-1) return sum[s][e];
int sumn=0,i;
for(i=s;i<=e;++i) sumn+=a[i];
return sum[s][e]=sumn;
}
int main()
{
int n,m,i,j,k;
while(cin>>n){memset(dp,inf,sizeof(dp));memset(sum,-1,sizeof(sum));
for(i=1;i<=n;++i) scanf("%d",&a[i]),dp[i][i]=0;
for(k=2;k<=n;++k)                              //控制区间长度
for(i=1;i+k-1<=n;++i){                          //i表示起点,由于长度的限制i不可取任意值
int minn=inf;
for(j=i;j<=i+k-1;++j) if(dp[i][j]+dp[j+1][i+k-1]<minn) minn=dp[i][j]+dp[j+1][i+k-1];     //j表示从此点分开,minn表示后合并左右两堆最小的值
dp[i][i+k-1]=minn+SUM(i,i+k-1);
}
cout<<dp[1][n]<<endl;
}
return 0;
}

nyoj737区间dp(石子合并)的更多相关文章

  1. 区间DP石子合并问题 & 四边形不等式优化

    入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[ ...

  2. 石头合并 NYOJ737 区间dp

    题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=737 石子合并(一) 时间限制:1000 ms  |  内存限制:65535 KB ...

  3. DP石子合并问题

    转自:http://www.hnyzsz.net/Article/ShowArticle.asp?ArticleID=735 [石子合并]    在一个圆形操场的四周摆放着n 堆石子.现要将石子有次序 ...

  4. 四边形不等式优化DP——石子合并问题 学习笔记

    好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...

  5. 「区间DP」「洛谷PP3146 」[USACO16OPEN]248 G

    [USACO16OPEN]248 G 题目: 题目描述 Bessie likes downloading games to play on her cell phone, even though sh ...

  6. nyoj737 石子合并(一) 区间DP

    dp[x][y]表示合并[x, y]区间的石子的最小花费,将区间长度递增枚举即可. AC代码: #include<cstdio> #include<algorithm> usi ...

  7. nyoj 737 石子合并(一)。区间dp

    http://acm.nyist.net/JudgeOnline/problem.php?pid=737 数据很小,适合区间dp的入门 对于第[i, j]堆,无论你怎么合并,无论你先选哪两堆结合,当你 ...

  8. [NYIST737]石子合并(一)(区间dp)

    题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=737 很经典的区间dp,发现没有写过题解.最近被hihocoder上几道比赛题难住了 ...

  9. CSU 1592 石子合并 (经典题)【区间DP】

    <题目链接> 题目大意: 现在有n堆石子,第i堆有ai个石子.现在要把这些石子合并成一堆,每次只能合并相邻两个,每次合并的代价是两堆石子的总石子数.求合并所有石子的最小代价. Input ...

随机推荐

  1. 虚拟机中安装mac系统

    虚拟机安装就很简单了,傻瓜式安装,一直点击下一步就行,这里就不多说了. 所需要的配置: 虚拟机下载地址:链接:http://pan.baidu.com/s/1i45wXRf 密码:7c4x mac补丁 ...

  2. 什么是IO多路复用?Nginx的处理机制

    先来说一下什么是IO复用? IO复用解决的就是并发行的问题,比如多个用户并发访问一个WEB网站,对于服务端后台而言就会产生多个请求,处理多个请求对于中间件就会产生多个IO流对于系统的读写.那么对于IO ...

  3. HTML 和 JavaScript 实现飘花的效果

    HTML 和 JavaScript 实现飘花的效果,也不算花,就是有悬浮物飘下来,和下雪似的. 也是不需要图片和其他的 js 脚本做辅助,其实已经全写在 HTML 文件中了. <html> ...

  4. 05:ModelForm 数据验证 & 生成html & 数据库操作

    目录:Django其他篇 01:Django基础篇 02:Django进阶篇 03:Django数据库操作--->Model 04: Form 验证用户数据 & 生成html 05:Mo ...

  5. JAVA学习调查问卷——20145101

    1.你对自己的未来有什么规划?做了哪些准备? 我希望在未来不管自己是否从事机要工作,都要做一个有能力,对社会能有所贡献的人.所以在现阶段我应该努力学习基础知识,夯实基本功,具备成为合格机要人的素质. ...

  6. 20145317彭垚 MSF基础应用

    20145317彭垚 MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode? exploit就相当于是载具,将真正要负责攻击的代码传送到靶机中,我觉得老师上课 ...

  7. TP/TCP/UDP

    这两周我继续学习CCSDS协议栈中位于传输层较低位置的SCPS-TP协议,并且复习了TCP/IP体系中的TCP协议和UDP协议,通过学习和对比两个体系的协议,加深了我对SCPS-TP协议的认识和理解. ...

  8. 瘋子C语言笔记 (string)

    1.strstr() 函数 搜索一个字符串在另一个字符串中的第一次出现.找到所搜索的字符串,则该函数返回第一次匹配的字符串的地址:如果未找到所搜索的字符串,则返回NULL. 2.strcat() 函数 ...

  9. [luogu 2458][SDOI2006]保安站岗

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  10. Facebook广告API系列 Business Manager

    Facebook广告API系列 Business Manager Business Manager,是个很牛叉的东西,有多牛叉呢? 因为facebook已经越来越商业化了,上面的每个账号,页面,往往都 ...