poj 2369 Permutations - 数论
This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc.
What is the value of the expression P(P(1))? It’s clear, that P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if P(n) is a permutation then P(P(n)) is a permutation as well. In our example (believe us)
It is natural to denote this permutation by P2(n) = P(P(n)). In a general form the defenition is as follows: P(n) = P1(n), Pk(n) = P(Pk-1(n)). Among the permutations there is a very important one — that moves nothing:
It is clear that for every k the following relation is satisfied: (EN)k = EN. The following less trivial statement is correct (we won't prove it here, you may prove it yourself incidentally): Let P(n) be some permutation of an N elements set. Then there exists a natural number k, that Pk = EN. The least natural k such that Pk = EN is called an order of the permutation P.
The problem that your program should solve is formulated now in a very simple manner: "Given a permutation find its order."
Input
Output
Sample Input
5
4 1 5 2 3
Sample Output
6
题目大意是讲给出一个置换,定义它和它自己的合成运算,问它和它自己进行多少次合成运算后又变回了自己。
根据置换的知识,任何一个置换都可以表示成轮换
然后根据人生的经验和数学的直觉,循环周期等于当置换表示成轮换的合成的形式时,每个轮换中元素的个数的最小公倍数(每次每个轮换往前转一次,如果还不能理解,出门左转<组合数学>)。
Code
/**
* poj
* Problem#2369
* Accepted
* Time:16ms
* Memory:692k
*/
#include<iostream>
#include<fstream>
#include<sstream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<ctime>
#include<map>
#include<stack>
#include<set>
#include<queue>
#include<vector>
#ifndef WIN32
#define AUTO "%lld"
#else
#define AUTO "%I64d"
#endif
using namespace std;
typedef bool boolean;
#define inf 0xfffffff
#define smin(a, b) (a) = min((a), (b))
#define smax(a, b) (a) = max((a), (b))
template<typename T>
inline boolean readInteger(T& u) {
char x;
int aFlag = ;
while(!isdigit((x = getchar())) && x != '-' && x != -);
if(x == -) {
ungetc(x, stdin);
return false;
}
if(x == '-') {
aFlag = -;
x = getchar();
}
for(u = x - ''; isdigit((x = getchar())); u = u * + x - '');
u *= aFlag;
ungetc(x, stdin);
return true;
} template<typename T>
T gcd(T a, T b) {
if(b == ) return a;
return gcd(b, a % b);
} int n;
int *f; inline void init() {
readInteger(n);
f = new int[(const int)(n + )];
for(int i = ; i <= n; i++)
readInteger(f[i]);
} int lcm = ;
boolean *visited;
inline void solve() {
visited = new boolean[(const int)(n + )];
memset(visited, false, sizeof(boolean) * (n + ));
for(int i = ; i <= n; i++) {
if(!visited[i]) {
int c = , j = i;
while(!visited[j]) {
visited[j] = true;
j = f[j], c++;
}
lcm = lcm / gcd(c, lcm) * c;
}
}
printf("%d", lcm);
} int main() {
init();
solve();
return ;
}
poj 2369 Permutations - 数论的更多相关文章
- POJ 2369 Permutations(置换群概念题)
Description We remind that the permutation of some final set is a one-to-one mapping of the set onto ...
- POJ 2369 Permutations
傻逼图论. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...
- poj 2369 Permutations 置换
题目链接 给一个数列, 求这个数列置换成1, 2, 3....n需要多少次. 就是里面所有小的置换的长度的lcm. #include <iostream> #include <vec ...
- poj 2369 Permutations 更换水称号
寻找循环节求lcm够了,如果答案是12345应该输出1.这是下一个洞. #include<iostream> #include<cstdio> #include<cstr ...
- poj 2369 Permutations (置换入门)
题意:给你一堆无序的数列p,求k,使得p^k=p 思路:利用置换的性质,先找出所有的循环,然后循环中元素的个数的lcm就是答案 代码: #include <cstdio> #include ...
- POJ 2369 Permutations (置换的秩P^k = I)
题意 给定一个置换形式如,问经过几次置换可以变为恒等置换 思路 就是求k使得Pk = I. 我们知道一个置换可以表示为几个轮换的乘积,那么k就是所有轮换长度的最小公倍数. 把一个置换转换成轮换的方法也 ...
- Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))
题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...
- poj 2369(置换群)
Permutations Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3041 Accepted: 1641 Desc ...
- poj 1845 【数论:逆元,二分(乘法),拓展欧几里得,费马小定理】
POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然 ...
随机推荐
- HDU-2680 Choose the best route 单向边+反向dijkstra
https://vjudge.net/problem/HDU-2680 题意:以起始点 终点 长度 给出一个图,已知可以从w个起点出发,求从任一起点到同一个终点s的最短路径.注意是单向边.m<1 ...
- MySQL在windows下的图形安装
1.mysql官网下载mysql-5.5.53-winx64.msi文件并保存到磁盘相应目录. 2.图形化安装mysql数据库: 1)双击mysql-5.5.53-winx64.msi,出现欢迎界面, ...
- WordCount优化
Github 地址:chaosrings/wcPro 1.PSP2.1表格 psp 2.1 psp阶段 预估耗时(分钟) 实际耗时(分钟) Planning 计划 10 10 Estimate 估计这 ...
- router-link传参 query方式
router.js内的路由配置 { path: '/CreateProgress', name: 'CreateProgress', component:CreateProgress } 传参(q ...
- Python 标准输出 sys.stdout 重定向
本文环境:Python 2.7 使用 print obj 而非 print(obj) 一些背景 sys.stdout 与 print 当我们在 Python 中打印对象调用 print obj 时候, ...
- IO流(6)获取功能
获取功能: * public String getAbsolutePath():获取绝对路径 * public String getPath():获取相对路径 * public String getN ...
- 【JMeter】1.9上考试jmeter测试调试
1.打开抓包工具开始抓包,抓取录制脚本的整个过程.以方便后续确认关联参数的左右关联,搜索相关代码. 1.用badboy录制测试脚本并存为jmeter格式. 2.用jmeter打开已经保存的脚本 1.用 ...
- shidebing——QandA:解决一个需求20171214
list1 = [ {'eip': 60, 'day': '2014-7-5'}, {'etans': 96, 'day': '2014-7-5'}, {'etans': 30, 'day': '20 ...
- [vue]组件最佳实战
[vue]全局组件和局部组件(嵌套+props引用父组件数据) [vue]组件篇 [vue]组件的创建(componet)和销毁(keep-alive缓存)和父子dom同步nextTick [vue] ...
- Git warning:LF will be replaced by CRLF in readme.txt的原因与解决方案
今天用Git bash遇到的问题,看了几个回答之后发现一个比较有价值的,给大家分享一下,其他很多的回答都有很或多或少存在一些弊端. 原回答地址在stackoverflow上,附上链接--http:// ...