poj 2369 Permutations - 数论
This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc.
What is the value of the expression P(P(1))? It’s clear, that P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if P(n) is a permutation then P(P(n)) is a permutation as well. In our example (believe us)
It is natural to denote this permutation by P2(n) = P(P(n)). In a general form the defenition is as follows: P(n) = P1(n), Pk(n) = P(Pk-1(n)). Among the permutations there is a very important one — that moves nothing:
It is clear that for every k the following relation is satisfied: (EN)k = EN. The following less trivial statement is correct (we won't prove it here, you may prove it yourself incidentally): Let P(n) be some permutation of an N elements set. Then there exists a natural number k, that Pk = EN. The least natural k such that Pk = EN is called an order of the permutation P.
The problem that your program should solve is formulated now in a very simple manner: "Given a permutation find its order."
Input
Output
Sample Input
5
4 1 5 2 3
Sample Output
6
题目大意是讲给出一个置换,定义它和它自己的合成运算,问它和它自己进行多少次合成运算后又变回了自己。
根据置换的知识,任何一个置换都可以表示成轮换
然后根据人生的经验和数学的直觉,循环周期等于当置换表示成轮换的合成的形式时,每个轮换中元素的个数的最小公倍数(每次每个轮换往前转一次,如果还不能理解,出门左转<组合数学>)。
Code
/**
* poj
* Problem#2369
* Accepted
* Time:16ms
* Memory:692k
*/
#include<iostream>
#include<fstream>
#include<sstream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<ctime>
#include<map>
#include<stack>
#include<set>
#include<queue>
#include<vector>
#ifndef WIN32
#define AUTO "%lld"
#else
#define AUTO "%I64d"
#endif
using namespace std;
typedef bool boolean;
#define inf 0xfffffff
#define smin(a, b) (a) = min((a), (b))
#define smax(a, b) (a) = max((a), (b))
template<typename T>
inline boolean readInteger(T& u) {
char x;
int aFlag = ;
while(!isdigit((x = getchar())) && x != '-' && x != -);
if(x == -) {
ungetc(x, stdin);
return false;
}
if(x == '-') {
aFlag = -;
x = getchar();
}
for(u = x - ''; isdigit((x = getchar())); u = u * + x - '');
u *= aFlag;
ungetc(x, stdin);
return true;
} template<typename T>
T gcd(T a, T b) {
if(b == ) return a;
return gcd(b, a % b);
} int n;
int *f; inline void init() {
readInteger(n);
f = new int[(const int)(n + )];
for(int i = ; i <= n; i++)
readInteger(f[i]);
} int lcm = ;
boolean *visited;
inline void solve() {
visited = new boolean[(const int)(n + )];
memset(visited, false, sizeof(boolean) * (n + ));
for(int i = ; i <= n; i++) {
if(!visited[i]) {
int c = , j = i;
while(!visited[j]) {
visited[j] = true;
j = f[j], c++;
}
lcm = lcm / gcd(c, lcm) * c;
}
}
printf("%d", lcm);
} int main() {
init();
solve();
return ;
}
poj 2369 Permutations - 数论的更多相关文章
- POJ 2369 Permutations(置换群概念题)
Description We remind that the permutation of some final set is a one-to-one mapping of the set onto ...
- POJ 2369 Permutations
傻逼图论. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...
- poj 2369 Permutations 置换
题目链接 给一个数列, 求这个数列置换成1, 2, 3....n需要多少次. 就是里面所有小的置换的长度的lcm. #include <iostream> #include <vec ...
- poj 2369 Permutations 更换水称号
寻找循环节求lcm够了,如果答案是12345应该输出1.这是下一个洞. #include<iostream> #include<cstdio> #include<cstr ...
- poj 2369 Permutations (置换入门)
题意:给你一堆无序的数列p,求k,使得p^k=p 思路:利用置换的性质,先找出所有的循环,然后循环中元素的个数的lcm就是答案 代码: #include <cstdio> #include ...
- POJ 2369 Permutations (置换的秩P^k = I)
题意 给定一个置换形式如,问经过几次置换可以变为恒等置换 思路 就是求k使得Pk = I. 我们知道一个置换可以表示为几个轮换的乘积,那么k就是所有轮换长度的最小公倍数. 把一个置换转换成轮换的方法也 ...
- Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))
题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...
- poj 2369(置换群)
Permutations Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3041 Accepted: 1641 Desc ...
- poj 1845 【数论:逆元,二分(乘法),拓展欧几里得,费马小定理】
POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然 ...
随机推荐
- Zhu and 772002---hdu5833(高斯消元解求异或方程组)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5833 题意:给n个数,选择一些数字乘积为平方数的选择方案数. 分析:每一个数字分解质因数.比如4, 6 ...
- Html各组件MIME类型
扩展名 类型/子类型 * application/octet-stream 323 text/h323 acx application/internet-property-stream ai appl ...
- 群用户通过微信小程序可以更好地协作了
今天,小程序向开发者开放了群ID的接口能力.简单地说,就是当你把小程序分享在群聊中,被点击后开发者可获取群ID和群名称,也方便更好地针对群场景提供个性化服务.不同的群有各自的群ID,那么这个新能力开发 ...
- 005-SpringBoot2.x整合Security5(解决 There is no PasswordEncoder mapped for the id "null")
问题描述 SpringBoot升级到了2.0之后的版本,Security也由原来的版本4升级到了5 使用WebSecurityConfigurerAdapter继承重置方法 protected voi ...
- vue-页面回退
<template> <div> <button @click="goback">我是Home01</button> </di ...
- vue学习五之VueCLi
概念 通俗的说,Vue CLI是我们创建大型项目时的脚手架,所谓脚手架,就是帮助我们建设好了建造大厦的所需模板,建设者只需往模板里面填入实质内容,即可完成大厦的建设,对于程序开发来说,脚手架使程序员只 ...
- Linux实验楼学习之一
查看当前所在目录 pwd 创建文件:1-1.txt touch 1-1.txt 进入统计目录下的etc目录 cd /etc 强行终止当前程序 Ctrl + c 常用快捷键 按键 作用 Ctrl+d 键 ...
- pem转cer
openssl x509 -inform pem -in fullchain.pem -outform der -out fullchain.cer
- [LeetCode] 67. Add Binary_Easy tag: String
Given two binary strings, return their sum (also a binary string). The input strings are both non-em ...
- 机器学习理论基础学习3.5--- Linear classification 线性分类之朴素贝叶斯
一.什么是朴素贝叶斯? (1)思想:朴素贝叶斯假设 条件独立性假设:假设在给定label y的条件下,特征之间是独立的 最简单的概率图模型 解释: (2)重点注意:朴素贝叶斯 拉普拉斯平滑 ...