We remind that the permutation of some final set is a one-to-one mapping of the set onto itself. Less formally, that is a way to reorder elements of the set. For example, one can define a permutation of the set {1,2,3,4,5} as follows: 
 
This record defines a permutation P as follows: P(1) = 4, P(2) = 1, P(3) = 5, etc. 
What is the value of the expression P(P(1))? It’s clear, that P(P(1)) = P(4) = 2. And P(P(3)) = P(5) = 3. One can easily see that if P(n) is a permutation then P(P(n)) is a permutation as well. In our example (believe us) 
 
It is natural to denote this permutation by P2(n) = P(P(n)). In a general form the defenition is as follows: P(n) = P1(n), Pk(n) = P(Pk-1(n)). Among the permutations there is a very important one — that moves nothing: 
 
It is clear that for every k the following relation is satisfied: (EN)k = EN. The following less trivial statement is correct (we won't prove it here, you may prove it yourself incidentally): Let P(n) be some permutation of an N elements set. Then there exists a natural number k, that Pk = EN. The least natural k such that Pk = EN is called an order of the permutation P. 
The problem that your program should solve is formulated now in a very simple manner: "Given a permutation find its order."


Input

In the first line of the standard input an only natural number N (1 <= N <= 1000) is contained, that is a number of elements in the set that is rearranged by this permutation. In the second line there are N natural numbers of the range from 1 up to N, separated by a space, that define a permutation — the numbers P(1), P(2),…, P(N).


Output

You should write an only natural number to the standard output, that is an order of the permutation. You may consider that an answer shouldn't exceed 10 9.


Sample Input

5
4 1 5 2 3

Sample Output

6

  题目大意是讲给出一个置换,定义它和它自己的合成运算,问它和它自己进行多少次合成运算后又变回了自己。

  根据置换的知识,任何一个置换都可以表示成轮换

  然后根据人生的经验和数学的直觉,循环周期等于当置换表示成轮换的合成的形式时,每个轮换中元素的个数的最小公倍数(每次每个轮换往前转一次,如果还不能理解,出门左转<组合数学>)。

Code

 /**
* poj
* Problem#2369
* Accepted
* Time:16ms
* Memory:692k
*/
#include<iostream>
#include<fstream>
#include<sstream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<ctime>
#include<map>
#include<stack>
#include<set>
#include<queue>
#include<vector>
#ifndef WIN32
#define AUTO "%lld"
#else
#define AUTO "%I64d"
#endif
using namespace std;
typedef bool boolean;
#define inf 0xfffffff
#define smin(a, b) (a) = min((a), (b))
#define smax(a, b) (a) = max((a), (b))
template<typename T>
inline boolean readInteger(T& u) {
char x;
int aFlag = ;
while(!isdigit((x = getchar())) && x != '-' && x != -);
if(x == -) {
ungetc(x, stdin);
return false;
}
if(x == '-') {
aFlag = -;
x = getchar();
}
for(u = x - ''; isdigit((x = getchar())); u = u * + x - '');
u *= aFlag;
ungetc(x, stdin);
return true;
} template<typename T>
T gcd(T a, T b) {
if(b == ) return a;
return gcd(b, a % b);
} int n;
int *f; inline void init() {
readInteger(n);
f = new int[(const int)(n + )];
for(int i = ; i <= n; i++)
readInteger(f[i]);
} int lcm = ;
boolean *visited;
inline void solve() {
visited = new boolean[(const int)(n + )];
memset(visited, false, sizeof(boolean) * (n + ));
for(int i = ; i <= n; i++) {
if(!visited[i]) {
int c = , j = i;
while(!visited[j]) {
visited[j] = true;
j = f[j], c++;
}
lcm = lcm / gcd(c, lcm) * c;
}
}
printf("%d", lcm);
} int main() {
init();
solve();
return ;
}

poj 2369 Permutations - 数论的更多相关文章

  1. POJ 2369 Permutations(置换群概念题)

    Description We remind that the permutation of some final set is a one-to-one mapping of the set onto ...

  2. POJ 2369 Permutations

    傻逼图论. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...

  3. poj 2369 Permutations 置换

    题目链接 给一个数列, 求这个数列置换成1, 2, 3....n需要多少次. 就是里面所有小的置换的长度的lcm. #include <iostream> #include <vec ...

  4. poj 2369 Permutations 更换水称号

    寻找循环节求lcm够了,如果答案是12345应该输出1.这是下一个洞. #include<iostream> #include<cstdio> #include<cstr ...

  5. poj 2369 Permutations (置换入门)

    题意:给你一堆无序的数列p,求k,使得p^k=p 思路:利用置换的性质,先找出所有的循环,然后循环中元素的个数的lcm就是答案 代码: #include <cstdio> #include ...

  6. POJ 2369 Permutations (置换的秩P^k = I)

    题意 给定一个置换形式如,问经过几次置换可以变为恒等置换 思路 就是求k使得Pk = I. 我们知道一个置换可以表示为几个轮换的乘积,那么k就是所有轮换长度的最小公倍数. 把一个置换转换成轮换的方法也 ...

  7. Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))

    题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...

  8. poj 2369(置换群)

    Permutations Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3041   Accepted: 1641 Desc ...

  9. poj 1845 【数论:逆元,二分(乘法),拓展欧几里得,费马小定理】

    POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然 ...

随机推荐

  1. HDU-2680 Choose the best route 单向边+反向dijkstra

    https://vjudge.net/problem/HDU-2680 题意:以起始点 终点 长度 给出一个图,已知可以从w个起点出发,求从任一起点到同一个终点s的最短路径.注意是单向边.m<1 ...

  2. MySQL在windows下的图形安装

    1.mysql官网下载mysql-5.5.53-winx64.msi文件并保存到磁盘相应目录. 2.图形化安装mysql数据库: 1)双击mysql-5.5.53-winx64.msi,出现欢迎界面, ...

  3. WordCount优化

    Github 地址:chaosrings/wcPro 1.PSP2.1表格 psp 2.1 psp阶段 预估耗时(分钟) 实际耗时(分钟) Planning 计划 10 10 Estimate 估计这 ...

  4. router-link传参 query方式

    router.js内的路由配置 { path: '/CreateProgress', name: 'CreateProgress', component:CreateProgress }   传参(q ...

  5. Python 标准输出 sys.stdout 重定向

    本文环境:Python 2.7 使用 print obj 而非 print(obj) 一些背景 sys.stdout 与 print 当我们在 Python 中打印对象调用 print obj 时候, ...

  6. IO流(6)获取功能

    获取功能: * public String getAbsolutePath():获取绝对路径 * public String getPath():获取相对路径 * public String getN ...

  7. 【JMeter】1.9上考试jmeter测试调试

    1.打开抓包工具开始抓包,抓取录制脚本的整个过程.以方便后续确认关联参数的左右关联,搜索相关代码. 1.用badboy录制测试脚本并存为jmeter格式. 2.用jmeter打开已经保存的脚本 1.用 ...

  8. shidebing——QandA:解决一个需求20171214

    list1 = [ {'eip': 60, 'day': '2014-7-5'}, {'etans': 96, 'day': '2014-7-5'}, {'etans': 30, 'day': '20 ...

  9. [vue]组件最佳实战

    [vue]全局组件和局部组件(嵌套+props引用父组件数据) [vue]组件篇 [vue]组件的创建(componet)和销毁(keep-alive缓存)和父子dom同步nextTick [vue] ...

  10. Git warning:LF will be replaced by CRLF in readme.txt的原因与解决方案

    今天用Git bash遇到的问题,看了几个回答之后发现一个比较有价值的,给大家分享一下,其他很多的回答都有很或多或少存在一些弊端. 原回答地址在stackoverflow上,附上链接--http:// ...