3.hadoop完全分布式搭建
3.Hadoop完全分布式搭建
1.完全分布式搭建
配置
#cd /soft/hadoop/etc/
#mv hadoop local
#cp -r local full
#ln -s full hadoop
#cd hadoop修改core-site.xml配置文件
#vim core-site.xml
[core-site.xml配置如下]
<?xml version="1.0"?>
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop-1</value>
</property>
</configuration>
修改hdfs-site.xml配置文件
#vim hdfs-site.xml
[hdfs-site.xml配置如下]
<?xml version="1.0"?>
<configuration>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>hadoop-2:50090</value>
</description>
</property>
</configuration>
修改mapred-site.xml配置文件
#cp mapred-site.xml.template mapred-site.xml
#vim mapred-site.xml
[mapred-site.xml配置如下]
<?xml version="1.0"?>
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
修改yarn-site.xml配置文件
#vim yarn-site.xml
[yarn-site.xml配置如下]
<?xml version="1.0"?>
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop-1</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
修改slaves配置文件
#vim slaves
[salves]
hadoop-2
hadoop-3
hadoop-4
hadoop-5
同步到其他节点
#scp -r /soft/hadoop/etc/full hadoop-2:/soft/hadoop/etc/
#scp -r /soft/hadoop/etc/full hadoop-3:/soft/hadoop/etc/
#scp -r /soft/hadoop/etc/full hadoop-4:/soft/hadoop/etc/
#scp -r /soft/hadoop/etc/full hadoop-5:/soft/hadoop/etc/
#ssh hadoop-2 ln -s /soft/hadoop/etc/full /soft/hadoop/etc/hadoop
#ssh hadoop-3 ln -s /soft/hadoop/etc/full /soft/hadoop/etc/hadoop
#ssh hadoop-4 ln -s /soft/hadoop/etc/full /soft/hadoop/etc/hadoop
#ssh hadoop-5 ln -s /soft/hadoop/etc/full /soft/hadoop/etc/hadoop
格式化hdfs分布式文件系统
#hadoop namenode -format
启动服务
[root@hadoop-1 hadoop]# start-all.sh
This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
Starting namenodes on [hadoop-1]
hadoop-1: starting namenode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-namenode-hadoop-1.out
hadoop-2: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-datanode-hadoop-2.out
hadoop-3: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-datanode-hadoop-3.out
hadoop-4: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-datanode-hadoop-4.out
hadoop-5: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-datanode-hadoop-5.out
Starting secondary namenodes [hadoop-2]
hadoop-2: starting secondarynamenode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-secondarynamenode-hadoop-2.out
starting yarn daemons
starting resourcemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-resourcemanager-hadoop-1.out
hadoop-3: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-nodemanager-hadoop-3.out
hadoop-4: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-nodemanager-hadoop-4.out
hadoop-2: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-nodemanager-hadoop-2.out
hadoop-5: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-nodemanager-hadoop-5.out
查看服务运行状态
[root@hadoop-1 hadoop]# jps
16358 ResourceManager
12807 NodeManager
16011 NameNode
16204 SecondaryNameNode
16623 Jps hadoop-5 | SUCCESS | rc=0 >>
16993 NodeManager
16884 DataNode
17205 Jps hadoop-1 | SUCCESS | rc=0 >>
28520 ResourceManager
28235 NameNode
29003 Jps hadoop-2 | SUCCESS | rc=0 >>
17780 Jps
17349 DataNode
17529 NodeManager
17453 SecondaryNameNode hadoop-4 | SUCCESS | rc=0 >>
17105 Jps
16875 NodeManager
16766 DataNode hadoop-3 | SUCCESS | rc=0 >>
16769 DataNode
17121 Jps
16878 NodeManager
登陆WEB查看
2. 完全分布式单词统计
通过hadoop自带的demo运行单词统计
#mkdir /input
#cd /input/
#echo "hello world" > file1.txt
#echo "hello world" > file2.txt
#echo "hello world" > file3.txt
#echo "hello hadoop" > file4.txt
#echo "hello hadoop" > file5.txt
#echo "hello mapreduce" > file6.txt
#echo "hello mapreduce" > file7.txt
#hadoop dfs -mkdir /input
#hdfs dfs -ls /
#hadoop fs -ls /
#hadoop fs -put /input/* /input
#hadoop fs -ls /input
开始统计
[root@hadoop-1 ~]# hadoop jar /soft/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /input/ /output
17/05/14 23:01:07 INFO client.RMProxy: Connecting to ResourceManager at hadoop-1/10.31.133.19:8032
17/05/14 23:01:09 INFO input.FileInputFormat: Total input paths to process : 7
17/05/14 23:01:10 INFO mapreduce.JobSubmitter: number of splits:7
17/05/14 23:01:10 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1494773207391_0001
17/05/14 23:01:10 INFO impl.YarnClientImpl: Submitted application application_1494773207391_0001
17/05/14 23:01:11 INFO mapreduce.Job: The url to track the job: http://hadoop-1:8088/proxy/application_1494773207391_0001/
17/05/14 23:01:11 INFO mapreduce.Job: Running job: job_1494773207391_0001
17/05/14 23:01:23 INFO mapreduce.Job: Job job_1494773207391_0001 running in uber mode : false
17/05/14 23:01:23 INFO mapreduce.Job: map 0% reduce 0%
17/05/14 23:01:56 INFO mapreduce.Job: map 43% reduce 0%
17/05/14 23:01:57 INFO mapreduce.Job: map 100% reduce 0%
17/05/14 23:02:04 INFO mapreduce.Job: map 100% reduce 100%
17/05/14 23:02:05 INFO mapreduce.Job: Job job_1494773207391_0001 completed successfully
17/05/14 23:02:05 INFO mapreduce.Job: Counters: 50
File System Counters
FILE: Number of bytes read=184
FILE: Number of bytes written=949365
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=801
HDFS: Number of bytes written=37
HDFS: Number of read operations=24
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Killed map tasks=1
Launched map tasks=7
Launched reduce tasks=1
Data-local map tasks=7
Total time spent by all maps in occupied slots (ms)=216289
Total time spent by all reduces in occupied slots (ms)=4827
Total time spent by all map tasks (ms)=216289
Total time spent by all reduce tasks (ms)=4827
Total vcore-milliseconds taken by all map tasks=216289
Total vcore-milliseconds taken by all reduce tasks=4827
Total megabyte-milliseconds taken by all map tasks=221479936
Total megabyte-milliseconds taken by all reduce tasks=4942848
Map-Reduce Framework
Map input records=7
Map output records=14
Map output bytes=150
Map output materialized bytes=220
Input split bytes=707
Combine input records=14
Combine output records=14
Reduce input groups=4
Reduce shuffle bytes=220
Reduce input records=14
Reduce output records=4
Spilled Records=28
Shuffled Maps =7
Failed Shuffles=0
Merged Map outputs=7
GC time elapsed (ms)=3616
CPU time spent (ms)=3970
Physical memory (bytes) snapshot=1528823808
Virtual memory (bytes) snapshot=16635846656
Total committed heap usage (bytes)=977825792
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=94
File Output Format Counters
Bytes Written=37查看
[root@hadoop-1 ~]# hadoop fs -ls /out/put
Found 2 items
-rw-r--r-- 3 root supergroup 0 2017-05-14 23:02 /out/put/_SUCCESS
-rw-r--r-- 3 root supergroup 37 2017-05-14 23:02 /out/put/part-r-00000
[root@hadoop-1 ~]# hadoop fs -cat /out/put/part-r-00000
hadoop 2
hello 7
mapreduce 2
world 3
[root@hadoop-1 ~]#
3.hadoop完全分布式搭建的更多相关文章
- hadoop完全分布式搭建HA(高可用)
2018年03月25日 16:25:26 D调的Stanley 阅读数:2725 标签: hadoop HAssh免密登录hdfs HA配置hadoop完全分布式搭建zookeeper 配置 更多 个 ...
- 超详细解说Hadoop伪分布式搭建--实战验证【转】
超详细解说Hadoop伪分布式搭建 原文http://www.tuicool.com/articles/NBvMv2原原文 http://wojiaobaoshanyinong.iteye.com/b ...
- Hadoop伪分布式搭建(一)
下面内容主要说明在Windows虚拟机上面,怎么搭建一个Hadoop伪分布式,并如何运行wordcount程序和网页查看HDFS文件系统. 1 相关软件下载和安装 APACH官网提供hadoop版本 ...
- Hadoop伪分布式搭建步骤
说明: 搭建环境是VMware10下用的是Linux CENTOS 32位,Hadoop:hadoop-2.4.1 JAVA :jdk7 32位:本文是本人在网络上收集的HADOOP系列视频所附带的 ...
- Hadoop 完全分布式搭建
搭建环境 https://www.cnblogs.com/YuanWeiBlogger/p/11456623.html 修改主机名------------------- 1./etc/hostname ...
- hadoop 伪分布式搭建
下载hadoop1.0.4版本,和jdk1.6版本或更高版本:1. 安装JDK,安装目录大家可以自定义,下面是我的安装目录: /usr/jdk1.6.0_22 配置环境变量: [root@hadoop ...
- Hadoop完全分布式搭建过程中遇到的问题小结
前一段时间,终于抽出了点时间,在自己本地机器上尝试搭建完全分布式Hadoop集群环境,也是借助网络上虾皮的Hadoop开发指南系列书籍一步步搭建起来的,在这里仅代表hadoop初学者向虾皮表示衷心的感 ...
- Hadoop完全分布式搭建流程
centos7 搭建完全分布式 Hadoop 环境 SSR 前言 本次教程是以先创建 四台虚拟机 为基础,再配置好一台虚拟机的情况下,直接复制文件到另外的虚拟机中(这样做大大简化了安装流程) 且本次 ...
- Hadoop伪分布式搭建CentOS
所需软件及版本: jdk-7u80-linux-x64.tar.gz hadoop-2.6.0.tar.gz 1.安装JDK Hadoop 在需在JDK下运行,注意JDK最好使用Oracle的否则可能 ...
随机推荐
- 使用dbca命令静默卸载数据库
1) help查询dbca的选项 su - oracledbca -help dbca [-silent | -progressOnly | -customCreate] {<comma ...
- oracle系列(二)用户管理
SQL> conn /as sysdbaConnected to Oracle Database 11g Express Edition Release 11.2.0.2.0 Connected ...
- c#数据库访问服务(综合数据库操作)
前面给大家说封装了常用的数据库,并且整理了使用.最近我再次把项目整合了.做成比较完善的服务. 还是重复的说下数据库操作封装. berkeley db数据库,Redis数据库,sqlite数据库. 每个 ...
- Python入门 —— 03GUI界面编程
GUI(Graphical User Interface) 即图形用户接口,又称图形用户接口. 是指采用图形方式显示的计算机操作用户界面.GUI 是屏幕产品的视觉体验和互动操作部分. "你的 ...
- vue使用axios调用豆瓣API跨域问题
最近做了一个vue小demo,使用了豆瓣开源的API,通过ajax请求时需要跨域才能使用. 封面.jpg 一.以下是豆瓣常用的开源接口: 正在热映 :https://api.douban.com/ ...
- vue-cli项目使用axios实现登录拦截
登录拦截 一.路由拦截 项目中某些页面需要用户登录后才可以访问,在路由配置中添加一个字段requireAuth 在router/index.js中 . const router = new Route ...
- 分布式缓存 Redis(二)
代码实例 namespace RedisTest { class Program { static void Main(string[] args) { Student stu = RedisOper ...
- 【Hive六】Hive调优小结
Hive调优 Hive调优 Fetch抓取 本地模式 表的优化 小表.大表Join 大表Join大表 MapJoin Group By Count(Distinct) 去重统计 行列过滤 动态分区调整 ...
- django的response-8
视图函数在处理请求后,必须返回一个 HttpResponse 对象,或者 HttpResponse对象的子对象. 1. HttpResponse 可以通过 django.http.HttpRespon ...
- st link 连接问题ST LINK is not in the DFU mode plesse restart it
原因:插上st link后做了一些操作才点击升级.如点击了连接stlink,如下图等: 解决办法: 1. 拔掉stlink 2. 插上stlink 3. 不要点其他的,直接点击ST-LINK-> ...