3.Hadoop完全分布式搭建

1.完全分布式搭建

  1. 配置

    #cd /soft/hadoop/etc/
    #mv hadoop local
    #cp -r local full
    #ln -s full hadoop
    #cd hadoop
  2. 修改core-site.xml配置文件

    #vim core-site.xml
    [core-site.xml配置如下]
    <?xml version="1.0"?>
    <configuration>
    <property>
    <name>fs.defaultFS</name>
    <value>hdfs://hadoop-1</value>
    </property>
    </configuration>
  3. 修改hdfs-site.xml配置文件

    #vim hdfs-site.xml
    [hdfs-site.xml配置如下]
    <?xml version="1.0"?>
    <configuration>
    <property>
    <name>dfs.replication</name>
    <value>3</value>
    </property>
    <property>
    <name>dfs.namenode.secondary.http-address</name>
    <value>hadoop-2:50090</value>
    </description>
    </property>
    </configuration>
  4. 修改mapred-site.xml配置文件

    #cp mapred-site.xml.template mapred-site.xml
    #vim mapred-site.xml
    [mapred-site.xml配置如下]
    <?xml version="1.0"?>
    <configuration>
    <property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
    </property>
    </configuration>
  5. 修改yarn-site.xml配置文件

    #vim yarn-site.xml
    [yarn-site.xml配置如下]
    <?xml version="1.0"?>
    <configuration>
    <property>
    <name>yarn.resourcemanager.hostname</name>
    <value>hadoop-1</value>
    </property>
    <property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
    </property>
    </configuration>
  6. 修改slaves配置文件

    #vim slaves
    [salves]
    hadoop-2
    hadoop-3
    hadoop-4
    hadoop-5
  7. 同步到其他节点

     #scp -r /soft/hadoop/etc/full  hadoop-2:/soft/hadoop/etc/
    #scp -r /soft/hadoop/etc/full hadoop-3:/soft/hadoop/etc/
    #scp -r /soft/hadoop/etc/full hadoop-4:/soft/hadoop/etc/
    #scp -r /soft/hadoop/etc/full hadoop-5:/soft/hadoop/etc/
    #ssh hadoop-2 ln -s /soft/hadoop/etc/full /soft/hadoop/etc/hadoop
    #ssh hadoop-3 ln -s /soft/hadoop/etc/full /soft/hadoop/etc/hadoop
    #ssh hadoop-4 ln -s /soft/hadoop/etc/full /soft/hadoop/etc/hadoop
    #ssh hadoop-5 ln -s /soft/hadoop/etc/full /soft/hadoop/etc/hadoop
  8. 格式化hdfs分布式文件系统

    #hadoop namenode -format
  9. 启动服务

    [root@hadoop-1 hadoop]# start-all.sh
    This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
    Starting namenodes on [hadoop-1]
    hadoop-1: starting namenode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-namenode-hadoop-1.out
    hadoop-2: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-datanode-hadoop-2.out
    hadoop-3: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-datanode-hadoop-3.out
    hadoop-4: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-datanode-hadoop-4.out
    hadoop-5: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-datanode-hadoop-5.out
    Starting secondary namenodes [hadoop-2]
    hadoop-2: starting secondarynamenode, logging to /soft/hadoop-2.7.3/logs/hadoop-root-secondarynamenode-hadoop-2.out
    starting yarn daemons
    starting resourcemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-resourcemanager-hadoop-1.out
    hadoop-3: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-nodemanager-hadoop-3.out
    hadoop-4: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-nodemanager-hadoop-4.out
    hadoop-2: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-nodemanager-hadoop-2.out
    hadoop-5: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-root-nodemanager-hadoop-5.out
  10. 查看服务运行状态

        [root@hadoop-1 hadoop]# jps
    16358 ResourceManager
    12807 NodeManager
    16011 NameNode
    16204 SecondaryNameNode
    16623 Jps hadoop-5 | SUCCESS | rc=0 >>
    16993 NodeManager
    16884 DataNode
    17205 Jps hadoop-1 | SUCCESS | rc=0 >>
    28520 ResourceManager
    28235 NameNode
    29003 Jps hadoop-2 | SUCCESS | rc=0 >>
    17780 Jps
    17349 DataNode
    17529 NodeManager
    17453 SecondaryNameNode hadoop-4 | SUCCESS | rc=0 >>
    17105 Jps
    16875 NodeManager
    16766 DataNode hadoop-3 | SUCCESS | rc=0 >>
    16769 DataNode
    17121 Jps
    16878 NodeManager
  11. 登陆WEB查看

2. 完全分布式单词统计

  1. 通过hadoop自带的demo运行单词统计

    #mkdir /input
    #cd /input/
    #echo "hello world" > file1.txt
    #echo "hello world" > file2.txt
    #echo "hello world" > file3.txt
    #echo "hello hadoop" > file4.txt
    #echo "hello hadoop" > file5.txt
    #echo "hello mapreduce" > file6.txt
    #echo "hello mapreduce" > file7.txt
    #hadoop dfs -mkdir /input
    #hdfs dfs -ls /
    #hadoop fs -ls /
    #hadoop fs -put /input/* /input
    #hadoop fs -ls /input
  2. 开始统计

    [root@hadoop-1 ~]# hadoop jar /soft/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /input/ /output
    17/05/14 23:01:07 INFO client.RMProxy: Connecting to ResourceManager at hadoop-1/10.31.133.19:8032
    17/05/14 23:01:09 INFO input.FileInputFormat: Total input paths to process : 7
    17/05/14 23:01:10 INFO mapreduce.JobSubmitter: number of splits:7
    17/05/14 23:01:10 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1494773207391_0001
    17/05/14 23:01:10 INFO impl.YarnClientImpl: Submitted application application_1494773207391_0001
    17/05/14 23:01:11 INFO mapreduce.Job: The url to track the job: http://hadoop-1:8088/proxy/application_1494773207391_0001/
    17/05/14 23:01:11 INFO mapreduce.Job: Running job: job_1494773207391_0001
    17/05/14 23:01:23 INFO mapreduce.Job: Job job_1494773207391_0001 running in uber mode : false
    17/05/14 23:01:23 INFO mapreduce.Job: map 0% reduce 0%
    17/05/14 23:01:56 INFO mapreduce.Job: map 43% reduce 0%
    17/05/14 23:01:57 INFO mapreduce.Job: map 100% reduce 0%
    17/05/14 23:02:04 INFO mapreduce.Job: map 100% reduce 100%
    17/05/14 23:02:05 INFO mapreduce.Job: Job job_1494773207391_0001 completed successfully
    17/05/14 23:02:05 INFO mapreduce.Job: Counters: 50
    File System Counters
    FILE: Number of bytes read=184
    FILE: Number of bytes written=949365
    FILE: Number of read operations=0
    FILE: Number of large read operations=0
    FILE: Number of write operations=0
    HDFS: Number of bytes read=801
    HDFS: Number of bytes written=37
    HDFS: Number of read operations=24
    HDFS: Number of large read operations=0
    HDFS: Number of write operations=2
    Job Counters
    Killed map tasks=1
    Launched map tasks=7
    Launched reduce tasks=1
    Data-local map tasks=7
    Total time spent by all maps in occupied slots (ms)=216289
    Total time spent by all reduces in occupied slots (ms)=4827
    Total time spent by all map tasks (ms)=216289
    Total time spent by all reduce tasks (ms)=4827
    Total vcore-milliseconds taken by all map tasks=216289
    Total vcore-milliseconds taken by all reduce tasks=4827
    Total megabyte-milliseconds taken by all map tasks=221479936
    Total megabyte-milliseconds taken by all reduce tasks=4942848
    Map-Reduce Framework
    Map input records=7
    Map output records=14
    Map output bytes=150
    Map output materialized bytes=220
    Input split bytes=707
    Combine input records=14
    Combine output records=14
    Reduce input groups=4
    Reduce shuffle bytes=220
    Reduce input records=14
    Reduce output records=4
    Spilled Records=28
    Shuffled Maps =7
    Failed Shuffles=0
    Merged Map outputs=7
    GC time elapsed (ms)=3616
    CPU time spent (ms)=3970
    Physical memory (bytes) snapshot=1528823808
    Virtual memory (bytes) snapshot=16635846656
    Total committed heap usage (bytes)=977825792
    Shuffle Errors
    BAD_ID=0
    CONNECTION=0
    IO_ERROR=0
    WRONG_LENGTH=0
    WRONG_MAP=0
    WRONG_REDUCE=0
    File Input Format Counters
    Bytes Read=94
    File Output Format Counters
    Bytes Written=37
  3. 查看

    [root@hadoop-1 ~]# hadoop fs -ls /out/put
    Found 2 items
    -rw-r--r-- 3 root supergroup 0 2017-05-14 23:02 /out/put/_SUCCESS
    -rw-r--r-- 3 root supergroup 37 2017-05-14 23:02 /out/put/part-r-00000
    [root@hadoop-1 ~]# hadoop fs -cat /out/put/part-r-00000
    hadoop 2
    hello 7
    mapreduce 2
    world 3
    [root@hadoop-1 ~]#

3.hadoop完全分布式搭建的更多相关文章

  1. hadoop完全分布式搭建HA(高可用)

    2018年03月25日 16:25:26 D调的Stanley 阅读数:2725 标签: hadoop HAssh免密登录hdfs HA配置hadoop完全分布式搭建zookeeper 配置 更多 个 ...

  2. 超详细解说Hadoop伪分布式搭建--实战验证【转】

    超详细解说Hadoop伪分布式搭建 原文http://www.tuicool.com/articles/NBvMv2原原文 http://wojiaobaoshanyinong.iteye.com/b ...

  3. Hadoop伪分布式搭建(一)

     下面内容主要说明在Windows虚拟机上面,怎么搭建一个Hadoop伪分布式,并如何运行wordcount程序和网页查看HDFS文件系统. 1 相关软件下载和安装 APACH官网提供hadoop版本 ...

  4. Hadoop伪分布式搭建步骤

    说明: 搭建环境是VMware10下用的是Linux CENTOS 32位,Hadoop:hadoop-2.4.1  JAVA :jdk7 32位:本文是本人在网络上收集的HADOOP系列视频所附带的 ...

  5. Hadoop 完全分布式搭建

    搭建环境 https://www.cnblogs.com/YuanWeiBlogger/p/11456623.html 修改主机名------------------- 1./etc/hostname ...

  6. hadoop 伪分布式搭建

    下载hadoop1.0.4版本,和jdk1.6版本或更高版本:1. 安装JDK,安装目录大家可以自定义,下面是我的安装目录: /usr/jdk1.6.0_22 配置环境变量: [root@hadoop ...

  7. Hadoop完全分布式搭建过程中遇到的问题小结

    前一段时间,终于抽出了点时间,在自己本地机器上尝试搭建完全分布式Hadoop集群环境,也是借助网络上虾皮的Hadoop开发指南系列书籍一步步搭建起来的,在这里仅代表hadoop初学者向虾皮表示衷心的感 ...

  8. Hadoop完全分布式搭建流程

    centos7 搭建完全分布式 Hadoop 环境  SSR 前言 本次教程是以先创建 四台虚拟机 为基础,再配置好一台虚拟机的情况下,直接复制文件到另外的虚拟机中(这样做大大简化了安装流程) 且本次 ...

  9. Hadoop伪分布式搭建CentOS

    所需软件及版本: jdk-7u80-linux-x64.tar.gz hadoop-2.6.0.tar.gz 1.安装JDK Hadoop 在需在JDK下运行,注意JDK最好使用Oracle的否则可能 ...

随机推荐

  1. 使用dbca命令静默卸载数据库

    1)     help查询dbca的选项 su - oracledbca -help dbca [-silent | -progressOnly | -customCreate] {<comma ...

  2. oracle系列(二)用户管理

    SQL> conn /as sysdbaConnected to Oracle Database 11g Express Edition Release 11.2.0.2.0 Connected ...

  3. c#数据库访问服务(综合数据库操作)

    前面给大家说封装了常用的数据库,并且整理了使用.最近我再次把项目整合了.做成比较完善的服务. 还是重复的说下数据库操作封装. berkeley db数据库,Redis数据库,sqlite数据库. 每个 ...

  4. Python入门 —— 03GUI界面编程

    GUI(Graphical User Interface) 即图形用户接口,又称图形用户接口. 是指采用图形方式显示的计算机操作用户界面.GUI 是屏幕产品的视觉体验和互动操作部分. "你的 ...

  5. vue使用axios调用豆瓣API跨域问题

    最近做了一个vue小demo,使用了豆瓣开源的API,通过ajax请求时需要跨域才能使用.   封面.jpg 一.以下是豆瓣常用的开源接口: 正在热映 :https://api.douban.com/ ...

  6. vue-cli项目使用axios实现登录拦截

    登录拦截 一.路由拦截 项目中某些页面需要用户登录后才可以访问,在路由配置中添加一个字段requireAuth 在router/index.js中 . const router = new Route ...

  7. 分布式缓存 Redis(二)

    代码实例 namespace RedisTest { class Program { static void Main(string[] args) { Student stu = RedisOper ...

  8. 【Hive六】Hive调优小结

    Hive调优 Hive调优 Fetch抓取 本地模式 表的优化 小表.大表Join 大表Join大表 MapJoin Group By Count(Distinct) 去重统计 行列过滤 动态分区调整 ...

  9. django的response-8

    视图函数在处理请求后,必须返回一个 HttpResponse 对象,或者 HttpResponse对象的子对象. 1. HttpResponse 可以通过 django.http.HttpRespon ...

  10. st link 连接问题ST LINK is not in the DFU mode plesse restart it

    原因:插上st link后做了一些操作才点击升级.如点击了连接stlink,如下图等: 解决办法: 1. 拔掉stlink 2. 插上stlink 3. 不要点其他的,直接点击ST-LINK-> ...