一   机器部署

1.1  机器组成

1台nameserver

1台broker  异步刷盘

2台producer

2台consumer
 

1.2  硬件配置

CPU  两颗x86_64cpu,每颗cpu12核,共24核

内存 48G

网卡 千兆网卡

磁盘 除broker机器的磁盘是RAID10,共1.1T,其他都是普通磁盘约500G
 

1.3  部署结构

橙色箭头为数据流向,黑色连接线为网络连接
 
 

1.4  内核参数

broker是一个存储型的系统,针对磁盘读写有自己的刷盘策略,大量使用文件内存映射,文件句柄和内存消耗量都比较巨大。因此,系统的默认设置并不能使RocketMQ发挥很好的性能,需要对系统的pagecache,内存分配,I/O调度,文件句柄限制做一些针对性的参数设置。

系统I/O和虚拟内存设置

echo 'vm.overcommit_memory=1' >> /etc/sysctl.conf

echo 'vm.min_free_kbytes=5000000' >> /etc/sysctl.conf

echo 'vm.drop_caches=1' >> /etc/sysctl.conf

echo 'vm.zone_reclaim_mode=0' >> /etc/sysctl.conf

echo 'vm.max_map_count=655360' >> /etc/sysctl.conf

echo 'vm.dirty_background_ratio=50' >> /etc/sysctl.conf

echo 'vm.dirty_ratio=50' >> /etc/sysctl.conf

echo 'vm.page-cluster=3' >> /etc/sysctl.conf

echo 'vm.dirty_writeback_centisecs=360000' >> /etc/sysctl.conf

echo 'vm.swappiness=10' >> /etc/sysctl.conf

系统文件句柄设置  对IO读写要求高的系统

echo 'ulimit -n 1000000' >> /etc/profile

echo 'admin hard nofile 1000000' >> /etc/security/limits.conf

系统I/O调度算法

deadline
 

1.5 JVM参数

采用RocketMQ默认设置

-server -Xms4g -Xmx4g -Xmn2g -XX:PermSize=128m -XX:MaxPermSize=320m -XX:+UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection -XX:CMSInitiatingOccupancyFraction=70 -XX:+CMSParallelRemarkEnabled -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+CMSClassUnloadingEnabled -XX:SurvivorRatio=8 -XX:+DisableExplicitGC -verbose:gc -Xloggc:/root/rocketmq_gc.log -XX:+PrintGCDetails -XX:-OmitStackTraceInFastThrow

 

二   性能评测

2.1  评测目的

压测单机TPS,评估单机容量
 

2.2  评测指标

最高的TPS不代表最适合的TPS,必须在TPS和系统资源各项指标之间取得一个权衡,系统资源快达到极限,但尚能正常运转,此时的TPS是比较合适的。比如ioutil最好不要超过75%,cpu load最好不超过总的核数或者太多,没有发生频繁的swap导致较大的内存颠簸。所以不能只关注TPS,同时要关注以下指标:

消息:TPS

cpu:load,sy,us

内存:useed,free,swap,cache,buffer

I/O:iops,ioutil,吞吐量(数据物理读写大小/秒)

网络:网卡流量

2.3  评测方式

两台producer起等量线程,不间断的向broker发送大小为2K的消息,2K消息意味着1000个字符,这个消息算比较大了,完全可以满足业务需要。

2.4  评测结果

TPS比较高

经过长时间测试和观察,单个borker TPS高达16000,也就是说服务器能每秒处理16000条消息,且消费端及时消费,从服务器存储消息到消费端消费完该消息平均时延约为1.3秒,且该时延不会随着TPS变大而变大,是个比较稳定的值。

Broker稳定性较高

两台producer一共启动44个线程10个小时不停发消息,broker非常稳定,这可简单意味着实际生产环境中可以有几十个producer向单台broker高频次发送消息,但是broker还会保持稳定。在这样比较大的压力下,broker的load最高才到3(24核的cpu),有大量的内存可用。

而且,连续10几小时测试中,broker的jvm非常平稳,没有发生一次fullgc,新生代GC回收效率非常高,内存没有任何压力,以下是摘自gclog的数据:

2014-07-17T22:43:07.407+0800: 79696.377: [GC2014-07-17T22:43:07.407+0800: 79696.377: [ParNew: 1696113K->18686K(1887488K), 0.1508800 secs] 2120430K->443004K(3984640K), 0.1513730 secs] [Times: user=1.36 sys=0.00, real=0.16 secs]

新生代大小为2g,回收前内存占用约为1.7g,回收后内存占用17M左右,回收效率非常高。

关于磁盘IO和内存

平均单个物理IO耗时约为0.06毫秒,IO几乎没有额外等待,因为await和svctm基本相等。整个测试过程,没有发生磁盘物理读,因为文件映射的关系,大量的cached内存将文件内容都缓存了,内存还有非常大的可用空间。

系统的性能瓶颈

TPS到达16000后,再就上不去了,此时千兆网卡的每秒流量约为100M,基本达到极限了,所以网卡是性能瓶颈。不过,系统的IOUTIL最高已经到达40%左右了,这个数字已经不低了,所以即使网络流量增加,但是系统IO指标可能已经不健康了,总体来看,单机16000的TPS是比较安全的值。

以下是各项指标的趋势
TPS
TPS最高可以压倒16000左右,再往上压,TPS有下降趋势
 
CPU

随着线程数增加,最后稳定在3左右,对于总共24核的两颗CPU,这点load根本不算什么

 
内存
内存非常平稳,总量48G,实际可用内存非常高
没有发生swap交换,不会因为频繁访问磁盘导致系统性能颠簸
大量内存被用来作为文件缓存,见cached指标,极大的避免了磁盘物理读
 

磁盘吞吐量

随着线程数增加,磁盘物理IO每秒数据读写大约为70M左右
 
磁盘IOPS
随着线程数增加,磁盘IOPS大约稳定在5000左右
注意非常重要的细节,即使在高达16000TPS时,磁盘仍然没有发生物理读,这和内存的cached指标是遥相呼应的,文件几乎全部在内存里,没有发生一次物理读,所以文件读的效率非常高,消息消费非常快
 
IO百分比
随着线程数增加,IO百分比最后稳定在40%左右,这个数字可以接受
 
网络
系统使用的千兆网卡,理论传输最大值为128M/秒,实际能达到100M就不错了。从图中可以看到,不断往上压请求,但是网卡流量已经上不去了

RocketMQ性能压测分析(转载)的更多相关文章

  1. RocketMQ性能压测分析(转)

    原创文章,转载请注明出处:http://jameswxx.iteye.com/blog/2093785 一   机器部署 1.1  机器组成 1台nameserver 1台broker  异步刷盘 2 ...

  2. 软件性能测试分析与调优实践之路-JMeter对RPC服务的性能压测分析与调优-手稿节选

    一.JMeter 如何通过自定义Sample来压测RPC服务 RPC(Remote Procedure Call)俗称远程过程调用,是常用的一种高效的服务调用方式,也是性能压测时经常遇到的一种服务调用 ...

  3. 【原】Nginx添加Content-MD5头部压测分析

    如需转载,必须注明原文地址,请尊重作者劳动成果. http://www.cnblogs.com/lyongerr/p/5048464.html 本文介绍了webbenck安装,但是最后使用的是ab工具 ...

  4. 性能压测诡异的Requests/second 响应刺尖问题

    最近一段时间都在忙着转java项目最后的冲刺,前期的coding翻代码.debug.fixbug都逐渐收尾,进入上线前的性能压测. 虽然不是大促前的性能压测要求,但是为了安全起见,需要摸个底心里有个数 ...

  5. 性能压测中的SLA,你知道吗?

    本文是<Performance Test Together>(简称PTT)系列专题分享的第6期,该专题将从性能压测的设计.实现.执行.监控.问题定位和分析.应用场景等多个纬度对性能压测的全 ...

  6. 并发模式与 RPS 模式之争,性能压测领域的星球大战

    本文是<如何做好性能压测>系列专题分享的第四期,该专题将从性能压测的设计.实现.执行.监控.问题定位和分析.应用场景等多个纬度对性能压测的全过程进行拆解,以帮助大家构建完整的性能压测的理论 ...

  7. jmeter系列-如何实现像loadrunner一样,多个并发用户先通过登录初始化,然后做并发的接口性能压测

    自动转开发后,就很少关注性能测试方面的东西,最近在帮朋友做一个性能压测,由于朋友那边的公司比较小,环境比较简单,而且是对http服务进行的压测,所以最终 选用了jmeter来实现这个压测. 如下就是我 ...

  8. 性能压测,SQL查询异常

    早上测试对性能压测,发现取sequence服务大量超时报错,查询线上的监控SQL: 大量这个查询,我在DeviceID和Isdelete上建有复合索引,应该很快,而且我测试了一下,取值,执行效率很高, ...

  9. jmeter性能压测瓶颈排查-网络带宽

    问题: 有一台机器做性能压测的时候,无论开多少个线程,QPS一直压不上去,而服务器和数据库的性能指标(主要是CPU和内存)一直维持在很低的水平. 希望帮忙排查一下原因. 过去看了下进行压测的接口代码, ...

随机推荐

  1. 我的Go语言学习之旅二:入门初体验 Hello World

    好吧,全部的程序猿们都已经习惯了.学习不论什么一门语言,我们都会以Hello World实例開始我们的学习,我也不例外.先来一个简单的样例 打开编辑器 (能够用记事本,我已经习惯 Notepad++了 ...

  2. iOS CoreData (一) 增删改查

    代码地址如下:http://www.demodashi.com/demo/11041.html Core Data是iOS5之后才出现的一个框架,本质上是对SQLite的一个封装,它提供了对象-关系映 ...

  3. iOS AVPlayer视频播放器

    代码地址如下:http://www.demodashi.com/demo/11168.html 一.运行效果 二.实现过程 ①.创建播放器avPlayer //创建播放器 url = [url str ...

  4. C#下载apk文件

    string fileName = "name.apk";//客户端保存的文件名         string filePath = Server.MapPath("ap ...

  5. Idea golang "can’t find import" 解决方法

    如题,在使用leveldb go wrapper levigo 的时候,本地安装好levigo后,通过命令行编译代码正常并能work,但在Idea中使用时出现: can't find import & ...

  6. Latex中设置字体颜色

    在用Latex时,想要使用不同颜色来突出某些关键点,有以下三种方案: 1.组合red.green和blue的值合成我们想要的颜色 \usepackage{color} \textcolor[rgb]{ ...

  7. android 基于分包方案的修复

    # 本demo实现原理来自 https://github.com/dodola/HotFix https://zhuanlan.zhihu.com/p/20308548 # Anti类功能,及其原理 ...

  8. SQL 将两个结构相同的表合并到成一个表

    select * into 新表名 from (select * from T1 union all select * from T2) 这个语句可以实现将合并的数据追加到一个新表中. 不合并重复数据 ...

  9. css - 当文本内容长度超出屏幕宽度时,以省略号代替

    <style> .ellipsis{ text-overflow: ellipsis; overflow: hidden; white-space: nowrap; } </styl ...

  10. PhpStorm和PHPstudy配置调试参数(Xdebug),问题描述Error. Interpreter is not specified or invalid. Press “Fix” to edit your project configuration.

    配置phpstrom的Xdebug 问题描述: Error. Interpreter is not specified or invalid. Press "Fix" to edi ...