数学归纳法

  我们先来看一个例子:

我们让多诺米骨牌倒下的充要条件是:

  1. 第一块骨牌倒下;
  2. 假设当当前块骨牌倒下时,则他的后面一块也会倒下。

我们把这个例子给抽象出来就可以得到数学归纳法的证明过程:

【第一数学归纳法】证明一个关于正整数n的命题P(n)成立:

  1. 当n=1时,P(1)成立。
  2. 当n≥2时,假设P(n-1)成立,则可以推出P(n)成立。

【第二数学归纳法】证明一个关于正整数n的命题P(n)成立:

  1. 证明一个或几个初值成立。
  2. 假设n=k或n≤k(k∈N+)时命题成立,证明n=k+1时命题成立。

我们举一个例子来理解一下:

  证明:1+2+3+…+n=(1/2)*n*(n+1)。

  证明:当n=1时,显然成立。

     假设n=k(k≠1,k∈N+)时等式成立,那么当n=k+1时一定有:左边=(1+2+3+…+k)+(k+1)=(1/2)*k*(k+1)+(k+1)=(1/2)*(k+1)*(k+2)=右边

      综上所述,得证。

二阶线性递归数列

定义

    

二阶线性递归数列的特征方程

    

二阶线性递归数列的通项式推导

    

Fibonacci数列

定义

    

通项公式的证明

    

Fibonacci数列的性质

    

    

数学归纳法·Fibonacci数列的更多相关文章

  1. 【编程题目】题目:定义 Fibonacci 数列 输入 n,用最快的方法求该数列的第 n 项。

    第 19 题(数组.递归):题目:定义 Fibonacci 数列如下:/ 0 n=0f(n)= 1 n=1/ f(n-1)+f(n-2) n=2输入 n,用最快的方法求该数列的第 n 项. 思路:递归 ...

  2. 程序员面试题精选100题(16)-O(logn)求Fibonacci数列[算法]

    作者:何海涛 出处:http://zhedahht.blog.163.com/ 题目:定义Fibonacci数列如下: /  0                      n=0 f(n)=      ...

  3. Fibonacci 数列和 Lucas 数列的性质、推论及其证明

    Fibonacci 数列 设f(x)=1,x∈{1,2}=f(x−1)+f(x−2),x∈[3,∞)\begin{aligned}f(x)&=1,\quad\quad\quad\quad\qu ...

  4. Fibonacci数列的性质

    Fibonacci: 0, 1, 1, 2, 3, 5, 8, 13, .... F[0] = 0; 1: gcd(Fn, Fm) = F[gcd(n, m)]; 当n - m = 1 或 2时满足, ...

  5. Fibonacci 数列算法分析

    /************************************************* * Fibonacci 数列算法分析 ****************************** ...

  6. 可变长度的Fibonacci数列

    原题目: Write a recursive program that extends the range of the Fibonacci sequence.  The Fibonacci sequ ...

  7. 入门训练 Fibonacci数列

      入门训练 Fibonacci数列   时间限制:1.0s   内存限制:256.0MB 问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1. 当n比较大时, ...

  8. fibonacci 数列及其应用

    fibonacci 数列及其延展 fibonacci计算 fibonacci数列是指 0,1,1,2,3,5,8,13,21……这样自然数序列,即从第3项开始满足f(n)=f(n-1)+f(n-2): ...

  9. 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2

    1732 Fibonacci数列 2  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 在“ ...

随机推荐

  1. 在浏览器中输入URL并回车后都发生了什么?

    1.解析URL ________________________________________________________________________ 关于URL: URL(Universa ...

  2. 启停无线网卡bat脚本

    @echo off color 2 title 启停无线网卡 echo 启动无线网卡=======>按1键 echo 关闭无线网卡=======>按2键 set /p n= if /i & ...

  3. Magento 2中文手册教程 - Magento 2 安装流程图

    下图提供了安装Magento 2的安装流程概述: 设置你的服务器环境. 安装magento 2 必备软件, PHP, Apache, MySQL. 系统需求详细信息: 2.1.x 系统需求 获得mag ...

  4. Android 屏蔽recent task 按钮

    Step 1 Add this permission to the manifest.xml file <uses-permission android:name="android.p ...

  5. .NET 中使用阿里云短信的 API 接口

    小弟初来乍到,这也是我的第一篇文章,写的不好的地方还望指正.谢谢各位! 引言 短信服务(Short Message Service)是阿里云为用户提供的一种通信服务的能力,支持快速发送短信验证码.短信 ...

  6. java泛型使用

    泛型的解释 现在感觉泛型是一个值得学习的地方,就抽出时间来学习和总结一下泛型的使用. Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允 ...

  7. spring 学习总结(一)

    一.spring概述 1.spring 是什么? Spring是一个开放源代码的设计层面框架,他解决的是业务逻辑层和其他各层的松耦合问题,因此它将面向接口的编程思想贯穿整个系统应用.Spring是于2 ...

  8. Java面试题之HashMap阿里面试必问知识点,你会吗?

    面试官Q1:你用过HashMap,你能跟我说说它的数据结构吗? HashMap作为一种容器类型,无论你是否了解过其内部的实现原理,它的大名已经频频出现在各种互联网Java面试题中了.从基本的使用角度来 ...

  9. mysql中的find_in_set的使用

    原文 http://www.php-note.com/article/detail/383 举个例子来说: 有个文章表里面有个type字段,它存储的是文章类型,有 1头条.2推荐.3热点.4图文... ...

  10. Can't read stdin: end of file found

    问题是在我修改svn的账号和密码后出现的,因为百度出来的情况只有一种答案,所以记录一下我的情况,给其他人多一种排查思路.问题根源是,由于该版本库只有一个账号,更改了账号密码,没有同步修改post-co ...