Harry and Magical Computer

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2559    Accepted Submission(s): 978

Problem Description
In reward of being yearly outstanding magic student, Harry gets a magical computer. When the computer begins to deal with a process, it will work until the ending of the processes. One day the computer got n processes to deal with. We number the processes from 1 to n. However there are some dependencies between some processes. When there exists a dependencies (a, b), it means process b must be finished before process a. By knowing all the m dependencies, Harry wants to know if the computer can finish all the n processes.
 
Input
There are several test cases, you should process to the end of file.
For each test case, there are two numbers n m on the first line, indicates the number processes and the number of dependencies. 1≤n≤100,1≤m≤10000
The next following m lines, each line contains two numbers a b, indicates a dependencies (a, b). 1≤a,b≤n
 
Output
Output one line for each test case. 
If the computer can finish all the process print "YES" (Without quotes).
Else print "NO" (Without quotes).
 
Sample Input
3 2
3 1
2 1
3 3
3 2
2 1
1 3
 
Sample Output
YES
NO
 
Source
 题意i:
n个点,m条有向边,问没有环输出yes,有环输出no.
代码:
//直接,拓扑排序然后判断是否还有没入队的点就行。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
int n,m,in[],cnt[],nu;
vector<int>g[];
void topu()
{
queue<int>q;
nu=;
for(int i=;i<=n;i++)
if(in[i]==) q.push(i);
while(!q.empty()){
int u=q.front();q.pop();
cnt[++nu]=u;
for(int i=;i<g[u].size();i++){
int p=g[u][i];
if(--in[p]==)
q.push(p);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)==){
for(int i=;i<=n;i++){
in[i]=;
g[i].clear();
}
int x,y;
for(int i=;i<m;i++){
scanf("%d%d",&x,&y);
g[x].push_back(y);
in[y]++;
}
topu();
if(nu>=n) printf("YES\n");
else printf("NO\n");
}
return ;
}

HDU5154拓扑排序的更多相关文章

  1. 算法与数据结构(七) AOV网的拓扑排序

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  2. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  3. 【BZOJ-2938】病毒 Trie图 + 拓扑排序

    2938: [Poi2000]病毒 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 609  Solved: 318[Submit][Status][Di ...

  4. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  5. 图——拓扑排序(uva10305)

    John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...

  6. Java排序算法——拓扑排序

    package graph; import java.util.LinkedList; import java.util.Queue; import thinkinjava.net.mindview. ...

  7. poj 3687(拓扑排序)

    http://poj.org/problem?id=3687 题意:有一些球他们都有各自的重量,而且每个球的重量都不相同,现在,要给这些球贴标签.如果这些球没有限定条件说是哪个比哪个轻的话,那么默认的 ...

  8. 拓扑排序 - 并查集 - Rank of Tetris

    Description 自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球. 为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他将制作一个全球 ...

  9. *HDU1285 拓扑排序

    确定比赛名次 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

随机推荐

  1. Java Web开发框架Spring+Hibernate整合效果介绍(附源码)(已过期,有更好的)

    最近花了一些时间整合了一个SpringMVC+springAOP+spring security+Hibernate的一套框架,之前只专注于.NET的软件架构设计,并没有接触过Java EE,好在有经 ...

  2. 利用AWS的EC2实例配合Putty访问Google账户

    首先,我们需要一个amazon的帐号,该帐号可以开始AWS服务,第一次使用时需要绑定信用卡并扣1美元,然后再退还到我们的卡中,就是要验证一下信用卡帐户的有效性哦.有了这个帐号就可以尽情地享受AWS提供 ...

  3. .Net并行编程 - Reactive Extensions(Rx)并发浅析

    关于Reactive Extensions(Rx) 关于Reactive Extensions(Rx),先来看一下来自微软的官方描述: The Reactive Extensions (Rx) is ...

  4. es6从零学习(四):Class的继承

    es6从零学习(四):Class的继承 一:继承的方式 1.Class 可以通过extends关键字实现继承 class Point { } class ColorPoint extends Poin ...

  5. Tic-Tac-Toe

    Description Kim likes to play Tic-Tac-Toe. Given a current state, and now Kim is going to take his n ...

  6. Scala可变对象

    Java提供JavaBean作为数据对象的封装, 而对于Scala来说也提供了同样的支持. class Apple { var weight: Float = _ var color: String ...

  7. 域名加www与不加www不一样结果的解决办法

    有些浏览器域名访问加www 与不加www出现的页面不一样.在aj请求的时候也不同.firefox与google新版本的都会自动加上www. 比如 访问haitaohua.com,但aj请求的时候是带w ...

  8. JavaScript初探系列之Ajax应用

    一 什么是Ajax Ajax是(Asynchronous JavaScript And XML)是异步的JavaScript和xml.也就是异步请求更新技术.Ajax是一种对现有技术的一种新的应用,不 ...

  9. Martin Fowler关于IOC和DI的文章(中文版)

    IoC容器和Dependency Injection模式 Martin Fowler 编者语:最近研究IoC,在网上搜索到很多网页推荐阅读Martin Fowler的一片名叫Inversion of  ...

  10. window对象与document对象的区别

    [window对象] 它是一个顶层对象,而不是另一个对象的属性,即浏览器的窗口. 属性 defaultStatus 缺省的状态条消息 document 当前显示的文档(该属性本身也是一个对象) fra ...