Harry and Magical Computer

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2559    Accepted Submission(s): 978

Problem Description
In reward of being yearly outstanding magic student, Harry gets a magical computer. When the computer begins to deal with a process, it will work until the ending of the processes. One day the computer got n processes to deal with. We number the processes from 1 to n. However there are some dependencies between some processes. When there exists a dependencies (a, b), it means process b must be finished before process a. By knowing all the m dependencies, Harry wants to know if the computer can finish all the n processes.
 
Input
There are several test cases, you should process to the end of file.
For each test case, there are two numbers n m on the first line, indicates the number processes and the number of dependencies. 1≤n≤100,1≤m≤10000
The next following m lines, each line contains two numbers a b, indicates a dependencies (a, b). 1≤a,b≤n
 
Output
Output one line for each test case. 
If the computer can finish all the process print "YES" (Without quotes).
Else print "NO" (Without quotes).
 
Sample Input
3 2
3 1
2 1
3 3
3 2
2 1
1 3
 
Sample Output
YES
NO
 
Source
 题意i:
n个点,m条有向边,问没有环输出yes,有环输出no.
代码:
//直接,拓扑排序然后判断是否还有没入队的点就行。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
int n,m,in[],cnt[],nu;
vector<int>g[];
void topu()
{
queue<int>q;
nu=;
for(int i=;i<=n;i++)
if(in[i]==) q.push(i);
while(!q.empty()){
int u=q.front();q.pop();
cnt[++nu]=u;
for(int i=;i<g[u].size();i++){
int p=g[u][i];
if(--in[p]==)
q.push(p);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)==){
for(int i=;i<=n;i++){
in[i]=;
g[i].clear();
}
int x,y;
for(int i=;i<m;i++){
scanf("%d%d",&x,&y);
g[x].push_back(y);
in[y]++;
}
topu();
if(nu>=n) printf("YES\n");
else printf("NO\n");
}
return ;
}

HDU5154拓扑排序的更多相关文章

  1. 算法与数据结构(七) AOV网的拓扑排序

    今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...

  2. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  3. 【BZOJ-2938】病毒 Trie图 + 拓扑排序

    2938: [Poi2000]病毒 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 609  Solved: 318[Submit][Status][Di ...

  4. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  5. 图——拓扑排序(uva10305)

    John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...

  6. Java排序算法——拓扑排序

    package graph; import java.util.LinkedList; import java.util.Queue; import thinkinjava.net.mindview. ...

  7. poj 3687(拓扑排序)

    http://poj.org/problem?id=3687 题意:有一些球他们都有各自的重量,而且每个球的重量都不相同,现在,要给这些球贴标签.如果这些球没有限定条件说是哪个比哪个轻的话,那么默认的 ...

  8. 拓扑排序 - 并查集 - Rank of Tetris

    Description 自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球. 为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他将制作一个全球 ...

  9. *HDU1285 拓扑排序

    确定比赛名次 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

随机推荐

  1. 剑指offer-栈的压入弹出序列21

    题目描述 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压 ...

  2. Spring Boot - Filter实现简单的Http Basic认证

    Copy自http://blog.csdn.net/sun_t89/article/details/51916834 @SpringBootApplicationpublic class Spring ...

  3. POJ 3415 Common Substrings(后缀数组)

    Description A substring of a string T is defined as: T(i, k)=TiTi+1...Ti+k-1, 1≤i≤i+k-1≤|T|. Given t ...

  4. 数据库索引(结合B-树和B+树)

    数据库索引,是数据库管理系统中一个排序的数据结构以协助快速查询.更新数据库表中数据.索引的实现通常使用B树及其变种B+树. 在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种 ...

  5. lintcode-160-寻找旋转排序数组中的最小值 II

    160-寻找旋转排序数组中的最小值 II 假设一个旋转排序的数组其起始位置是未知的(比如0 1 2 4 5 6 7 可能变成是4 5 6 7 0 1 2). 你需要找到其中最小的元素. 数组中可能存在 ...

  6. 【alpha】Scrum站立会议第3次....10.18

    小组名称:nice! 小组成员:李权 于淼 杨柳 刘芳芳 项目内容:约跑app(约吧--暂定) 1.任务进度 2.燃尽图 功能列表 1.登录注册 2.创建跑步计划 3.筛选跑友 4.加一起跑步的人为好 ...

  7. Vue脚手架开发使用sass

    vue默认采用的是原生的css,如果想要使用css预编译工具,比如sass,需要下载对应的scss的loader, 具体是 npm install --save-dev sass-loader npm ...

  8. Windows Sever 2008隐藏和系统属性

    由于有些目录为隐藏和系统属性,首先要把 显示系统文件和显示所有文件 功能开启,把隐藏文件和目录显出来. 1.C:\Windows\Web\Wall*** 自带墙纸,不需要的可以删除掉. 2.C:\Wi ...

  9. LINUX硬件查看命令

    1.查看系统PCI设备 lspci lspci -v   显示更详细的PCI设备信息 2.查看CPU信息 more / proc /cpuinfo 3.查看系统内存信息 more /proc /mem ...

  10. 《Effective C#》快速笔记(五)- - C# 中的动态编程

    静态类型和动态类型各有所长,静态类型能够让编译器帮你找出更多的错误,因为编译器能够在编译时进行大部分的检查工作.C# 是一种静态类型的语言,不过它加入了动态类型的语言特性,可以更高效地解决问题. 一. ...