ACM3018欧拉回路
欧拉回路
欧拉回路:图G,若存在一条路,经过G中每条边有且仅有一次,称这条路为欧拉路,如果存在一条回路经过G每条边有且仅有一次,
称这条回路为欧拉回路。具有欧拉回路的图成为欧拉图。
判断欧拉路是否存在的方法
有向图:图连通,有一个顶点出度大入度1,有一个顶点入度大出度1,其余都是出度=入度。
无向图:图连通,只有两个顶点是奇数度,其余都是偶数度的。
判断欧拉回路是否存在的方法
有向图:图连通,所有的顶点出度=入度。
无向图:图连通,所有顶点都是偶数度。
程序实现一般是如下过程:
1.利用并查集判断图是否连通,即判断可以作为起点的点的个数,如果大于1,说明不连通。
2.根据出度入度个数,判断是否满足要求。
3.利用dfs输出路径。
Notice:并查集使用中连接点时必须判断两点是否不在一个集合,不然可能会造成STACK_OVERFLOW的错误,下面做的这个就是血淋淋的例子啊!
#include<iostream>
using namespace std;
int n,m,cnt;
int *p,*degree,*odd,*vis,*record;
void init(int g)
{
p=new int[g+];
degree=new int[g+];
odd=new int[g+];
vis=new int[g+];
record=new int[g+];
cnt=;
for(int i=;i<=g;i++)
{
p[i]=-;
degree[i]=;
odd[i]=;
vis[i]=;
}
}
void destroy()
{
delete []p;
delete []degree;
delete []odd;
delete []vis;
delete []record;
}
int find(int x)
{
if(p[x]<)return x;
return p[x]=find(p[x]);
}
void Union(int a,int b)
{
int fa=find(a);
int fb=find(b);
if(fa==fb)return;//这一步判断很重要,在这里错了好多次,其他地方没错;
int da=p[fa];
int db=p[fb];
if(da>db)
{
p[fa]=fb;
p[fb]+=da;
}
else
{
p[fb]=fa;
p[fa]+=db;
}
}
int main()
{
int a,b;
while(scanf("%d %d",&n,&m)==)
{
init(n);
for(int i=;i<=m;i++)
{
scanf("%d %d",&a,&b);
degree[a]++;
degree[b]++;
Union(a,b);
}
int f;
for(int i=;i<=n;i++)
{
f=find(i);
if(!vis[f])
{
vis[f]=;
record[cnt++]=f;
}
if(degree[i]%==)
odd[f]++;
}
int res=;
for(int i=;i<cnt;i++)
{
if(degree[record[i]]==)continue;
if(odd[record[i]]==)
res++;
else res+=odd[record[i]]/;
}
destroy();
printf("%d\n",res);
}
return ;
}
ACM3018欧拉回路的更多相关文章
- ACM/ICPC 之 混合图的欧拉回路判定-网络流(POJ1637)
//网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Me ...
- [poj2337]求字典序最小欧拉回路
注意:找出一条欧拉回路,与判定这个图能不能一笔联通...是不同的概念 c++奇怪的编译规则...生不如死啊... string怎么用啊...cincout来救? 可以直接.length()我也是长见识 ...
- ACM: FZU 2112 Tickets - 欧拉回路 - 并查集
FZU 2112 Tickets Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u P ...
- UVA 10054 the necklace 欧拉回路
有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...
- POJ 1637 混合图的欧拉回路判定
题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...
- codeforces 723E (欧拉回路)
Problem One-Way Reform 题目大意 给一张n个点,m条边的无向图,要求给每条边定一个方向,使得最多的点入度等于出度,要求输出方案. 解题分析 最多点的数量就是入度为偶数的点. 将入 ...
- UVa 12118 检查员的难题(dfs+欧拉回路)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 10054 (欧拉回路) The Necklace
题目:这里 题意:有一种由彩色珠子连接而成的项链,每个珠子两半由不同颜色(由1到50的数字表示颜色)组成,相邻的两个珠子在接触的地方颜色相同,现在有一些零碎的珠子,确认它是否能 复原成完整的项链. 把 ...
- poj2513Colored Sticks(无向图的欧拉回路)
/* 题意:将两端涂有颜色的木棒连在一起,并且连接处的颜色相同! 思路:将每一个单词看成一个节点,建立节点之间的无向图!判断是否是欧拉回路或者是欧拉路 并查集判通 + 奇度节点个数等于2或者0 */ ...
随机推荐
- 饥饿的小易(枚举+广度优先遍历(BFS))
题目描述 小易总是感觉饥饿,所以作为章鱼的小易经常出去寻找贝壳吃.最开始小易在一个初始位置x_0.对于小易所处的当前位置x,他只能通过神秘的力量移动到 4 * x + 3或者8 * x + 7.因为使 ...
- 深度学习笔记 (一) 卷积神经网络基础 (Foundation of Convolutional Neural Networks)
一.卷积 卷积神经网络(Convolutional Neural Networks)是一种在空间上共享参数的神经网络.使用数层卷积,而不是数层的矩阵相乘.在图像的处理过程中,每一张图片都可以看成一张“ ...
- HADOOP (十一).安装hbase
下载安装包并解压设置hbase环境变量配置hbase-site.xml启动hbase检测hbase启动情况测试hbase shell 下载安装包并解压 https://mirrors.tuna.tsi ...
- Alpha 冲刺2
队名:日不落战队 安琪(队长) 今天完成的任务 组织第二次站立式会议. 完成40%个人信息前端界面. 明天的计划 完成剩下的60%个人信息前端界面. 还剩下的任务 个人信息修改前端界面. 遇到的困难 ...
- LintCode-376.二叉树的路径和
二叉树的路径和 给定一个二叉树,找出所有路径中各节点相加总和等于给定 目标值 的路径. 一个有效的路径,指的是从根节点到叶节点的路径. 样例 给定一个二叉树,和 目标值 = 5: 返回: [ ...
- TCP系列07—连接管理—6、TCP连接管理的状态机
经过前面对TCP连接管理的介绍,我们本小节通过TCP连接管理的状态机来总结一下看看TCP连接的状态变化 一.TCP状态机整体状态转换图(截取自第二版TCPIP详解) 二.TCP连接建立 ...
- TCP系列01—概述及协议头格式
一.TCP简单介绍 我们经常听人说TCP是一个面向连接的(connection-oriented).可靠的(reliable).字节流式(byte stream)传输协议, TCP的这三个特性该怎么 ...
- C++多态实现与继承
面向对象的三个基本特征 面向对象的三个基本特征是:封装.继承.多态.其中, 封装可以隐藏实现细节,使得代码模块化: 继承可以扩展已存在的代码模块(类),它们的目的都是为了——代码重用: 而多态则是为了 ...
- [STAThread] 作用
[STAThread]是一种线程模型,用在程序的入口方法上(在C#和VB.NET里是Main()方法),来指定当前线程的ApartmentState 是STA. [STAThread]是声明开始线程用 ...
- Redis 学习之常用命令及安全机制
该文使用centos6.5 64位 redis3.2.8 一.redis常用命令 键值常用命令: 1. keys 返回满足pattern的所有key. 127.0.0.1:6379> ke ...