Regular Bridge
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

An undirected graph is called k-regular, if the degrees of all its vertices are equal k. An edge of a connected graph is called a bridge, if after removing it the graph is being split into two connected components.

Build a connected undirected k-regular graph containing at least one bridge, or else state that such graph doesn't exist.

Input

The single line of the input contains integer k (1 ≤ k ≤ 100) — the required degree of the vertices of the regular graph.

Output

Print "NO" (without quotes), if such graph doesn't exist.

Otherwise, print "YES" in the first line and the description of any suitable graph in the next lines.

The description of the made graph must start with numbers n and m — the number of vertices and edges respectively.

Each of the next m lines must contain two integers, a and b (1 ≤ a, b ≤ na ≠ b), that mean that there is an edge connecting the verticesa and b. A graph shouldn't contain multiple edges and edges that lead from a vertex to itself. A graph must be connected, the degrees of all vertices of the graph must be equal k. At least one edge of the graph must be a bridge. You can print the edges of the graph in any order. You can print the ends of each edge in any order.

The constructed graph must contain at most 106 vertices and 106 edges (it is guaranteed that if at least one graph that meets the requirements exists, then there also exists the graph with at most 106 vertices and at most 106 edges).

Examples
input
1
output
YES
2 1
1 2
Note

In the sample from the statement there is a suitable graph consisting of two vertices, connected by a single edge.

题目大意:给你一个k。让你构造一个无向图,最少有一条桥,保证这个图中的所有顶点的度都为k。如果有这样的图,输出顶点数和边数,同时还有所有边的端点。

解题思路:首先我们证明k不能是偶数,假设结点u和v关于一条桥邻接,那么如果去掉该桥后,对于包含u结点的连通分量来说,只有u结点是奇数,那么这与连通分量中所有结点的度的和为偶数相矛盾,得证k只能为奇数。

    讨论k为奇数:我们假定结点1是由桥所连接的结点,那么想让1结点度数为k,那么就要有k-1个结点与1邻接,我们假设是2->k,这k-1个结点就算是行成完全图也不能保证度数为k,所以需要加一个结点k+1,让k+1先与2->k这k-1个结点相连,但是k+1结点的度才为k-1,所以我们仍然需要加结点k+2,让k+2也与2->k都连接,同时让k+1与k+2连接。保证了k+1和k+2度都为k。但是这时候2->k这k-1个结点度数都才为3。如果让2->k这k-1个结点行成完全图,那么每个结点会增加k-2个度,但是现在需要每个结点增加k-3个度,所以需要每个结点减少1个度。我们可以假设删去2 -> 3, 4 -> 5,6->7.....这些边。到这里我们的构造算法已经结束了。

    构造算法为:让1、k+1、k+2跟2->k这k-1个结点邻接,同时让2->k这k-1个结点形成完全图,但是删除env->env+1,env为2->k中所有偶数。同时桥所连接的那一边是对称的处理。

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
using namespace std;
typedef long long LL;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
#pragma comment(linker, "/STACK:102400000,102400000")
const int maxn = 1e5 + 300;
const int INF = 0x3f3f3f3f;
typedef long long LL;
typedef unsigned long long ULL;
int main() {
int k;
scanf ( "%d", &k );
if ( k == 1 ) {
puts ("YES\n2 1\n1 2");
}else if ( k % 2 == 0 ) {
puts ( "NO" );
}else {
puts ( "YES" );
printf ( "%d %d\n", 2*k + 4, k*(k+2) );
for ( int i = 2; i <= k; i++ ) {
printf ( "1 %d\n", i );
}
int nn = k + 2;
for ( int i = 2; i <= k; i++ ) {
printf("%d %d\n",i, k+1);
printf("%d %d\n",i, k+2);
for ( int j = i + 1; j <= k; j++ ) {
if(i%2 == 0 && j == i+1) continue;
printf ( "%d %d\n", i, j );
}
}
printf ( "%d %d\n", k + 1, k + 2 ); for ( int i = 2; i <= k; i++ ) {
printf ( "%d %d\n", 1 + nn, i + nn );
}
for ( int i = 2; i <= k; i++ ) {
printf("%d %d\n",i+nn, nn+k+1);
printf("%d %d\n",i+nn, nn+k+2);
for ( int j = i + 1; j <= k; j++ ) {
if(i%2 == 0 && j == i+1) continue;
printf ( "%d %d\n", i + nn, j + nn );
}
}
printf ( "%d %d\n", k + 1 + nn, k + 2 + nn );
printf ( "%d %d\n", 1, nn + 1 );
}
return 0;
}

  

Codeforces 550D —— Regular Bridge——————【构造】的更多相关文章

  1. codeforces #550D Regular Bridge 构造

    题目大意:给定k(1≤k≤100),要求构造一张简单无向连通图,使得存在一个桥,且每一个点的度数都为k k为偶数时无解 证明: 将这个图缩边双,能够得到一棵树 那么一定存在一个叶节点,仅仅连接一条桥边 ...

  2. Codeforces Round #306 (Div. 2) D. Regular Bridge 构造

    D. Regular Bridge Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550/pro ...

  3. cf550D. Regular Bridge(构造)

    题意 给出一个$k$,构造一个无向图,使得每个点的度数为$k$,且存在一个桥 Sol 神仙题 一篇写的非常好的博客:http://www.cnblogs.com/mangoyang/p/9302269 ...

  4. Codeforces 550 D. Regular Bridge

    \(>Codeforces \space 550 D. Regular Bridge<\) 题目大意 :给出 \(k\) ,让你构造出一张点和边都不超过 \(10^6\) 的无向图,使得每 ...

  5. cf550D Regular Bridge

    Regular Bridge An undirected graph is called k-regular, if the degrees of all its vertices are equal ...

  6. cf#306D. Regular Bridge(图论,构图)

    D. Regular Bridge time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  7. D. Regular Bridge 解析(思維、圖論)

    Codeforce 550 D. Regular Bridge 解析(思維.圖論) 今天我們來看看CF550D 題目連結 題目 給你一個\(k\le100\),請構造出一個至少有一個Bridge的,每 ...

  8. 「日常训练」Regular Bridge(Codeforces Round 306 Div.2 D)

    题意与分析 图论基础+思维题. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back #defi ...

  9. Codeforces 1383D - Rearrange(构造)

    Codeforces 题面传送门 & 洛谷题面传送门 一道不算困难的构造,花了一节英语课把它搞出来了,题解简单写写吧( 考虑从大往小加数,显然第三个条件可以被翻译为,每次加入一个元素,如果它所 ...

随机推荐

  1. Partition--分区Demo

    --============================================================= --创建分区函数 --创建500分区,分区键按照1000依次递增 CRE ...

  2. sql获取表的所有字段及属性

    select c.name as name,t.name as type ,convert(bit,c.IsNullable) as isNULL , from sysobjects where xt ...

  3. openedx下载汉化包的一些操作

    首先我是用debian9系统,然后装了xface桌面,感觉挺好用的,怎么确定路径是否和别人的一样了,我主要参照edx-platform这个文件夹的位置. 1. 参照大神的这个贴子https://www ...

  4. C#连接SQL server数据库

    C#连接SQL server数据库 创建一个Windows应用程序,在窗体中添加TextBox控件.Button控件.Label控件. private void button1_Click(objec ...

  5. 网站运维之 使用IIS日志分析器1.03.exe进行IIS服务器日志分析

    引言 对于网站运维是一个比较要细心有耐心的工作,当一个网站从开发到上线后,后期的维护也很关键,特别是对于引流的网站来说更是至关重要. 对于网站运维的内容大致可以分为: SEO流量监控方面:风险防控:访 ...

  6. PLSQL Developer 13.0.0.1883 注册码

    PLSQL Developer 13.0.0.1883 注册码 product code: 4vkjwhfeh3ufnqnmpr9brvcuyujrx3n3le serial Number:22695 ...

  7. django中models联合唯一unique_together

    例: 文章点赞 class ArticleUpDown(models.Model): """ 点赞表 """ nid = models.Au ...

  8. [agc004e]Salvage Robots dp

    Description 蛤蟆国的领土我们可以抽象为H*W的笼子,在这片蛤土上,有若干个机器人和一个出口,其余都是空地,每次蛤蟆会要求让所有的机器人向某个方向移动一步,当机器人移动到出口时会被蛤蟆活摘出 ...

  9. Linux下的find查找命令

    Linux下的查找命令有:which(查看可执行文件的位置),whereis(查看指定文件的位置),locate(配合数据库查找指定文件的内容).find(在磁盘上查找文件).grep(使用正则表达式 ...

  10. TCP 的保活定时器

    引言 可以没有任何数据流过一个空闲的 TCP 连接. 这意味着我们可以启动一个客户与服务器建 立一个连接,然后离去数小时.数天.数个星期或者数月,而连接依然保持.中间路由器可以崩溃和重启,电话线可以被 ...