一 题目:斐波那契数列

题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。斐波那契数列的定义如下:

二 效率很低的解法

  很多C/C++/C#/Java语言教科书在讲述递归函数的时候,大多都会用Fibonacci作为例子,因此我们会对这种解法烂熟于心

#include "stdio.h"
#include <iostream>
using namespace std; int Fibs(int n)
{
if (0 == n)
{
return ;
}
else if (1 == n)
{
return ;
}
return Fibs(n-) + Fibs(n-);
} void main()
{
cout << "斐波那契数列:" << endl;
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" " << endl;
return;
}

  上述递归的解法有很严重的效率问题,通过求解第10项的调用过程图来分析:

  

  从上图中不难发现:在这棵树中有很多结点是重复的,而且重复的结点数会随着n的增大而急剧增加,这意味计算量会随着n的增大而急剧增大。事实上,用递归方法计算的时间复杂度是以n的指数的方式递增的

三 时间复杂度为O(n)的解法

  改进的方法并不复杂。上述递归代码之所以慢是因为重复的计算太多,我们只要想办法避免重复计算就行了。这里的办法是从下往上计算,首先根据f(0)和f(1)算出f(2),再根据f(1)和f(2)算出f(3)……依此类推就可以算出第n项了。很容易理解,这种思路的时间复杂度是O(n)

#include "stdio.h"
#include <iostream>
using namespace std; int Fibs(int n)
{
int nFibs = ;
if ( == n)
{
return ;
}
else if( == n)
{
return ;
}
int nSubOne = ; // Fibs(n-1)
int nSubTwo = ; // Fibs(n-2)
for (int i = ; i <= n; i ++)
{
nFibs = nSubOne + nSubTwo;
nSubTwo = nSubOne;
nSubOne = nFibs;
} return nFibs;
} void main()
{
cout << "斐波那契数列:" << endl;
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" ";
cout <<Fibs()<<" " << endl;
return;
}

剑指Offer面试题:7.斐波那契数列的更多相关文章

  1. 剑指Offer - 九度1387 - 斐波那契数列

    剑指Offer - 九度1387 - 斐波那契数列2013-11-24 03:08 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.斐波那契数列的定义如下: ...

  2. 剑指offer第二版-10.斐波那契数列

    面试题10:斐波那契数列 题目要求: 求斐波那契数列的第n项的值.f(0)=0, f(1)=1, f(n)=f(n-1)+f(n-2) n>1 思路:使用循环从下往上计算数列. 考点:考察对递归 ...

  3. 【剑指offer】9、斐波拉契数列

    面试题9.斐波拉契数列 题目: 输入整数n,求斐波拉契数列第n个数. 思路: 一.递归式算法: 利用f(n) = f(n-1) + f(n-2)的特性来进行递归,代码如下: 代码: long long ...

  4. 剑指offer【07】- 斐波那契数列(java)

    题目:斐波那契数列 考点:递归和循环 题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0),n<=39. 法一:递归法,不过递归比较慢, ...

  5. 剑指offer(7)斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 题目分析 我们都知道斐波那契可以用递归,但是递归重复计算的部分太多了(虽然可以通过),但是这 ...

  6. 【剑指Offer】7、斐波那契数列

      题目描述:   大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).假设n<=39.   解题思路:   斐波那契数列:0,1,1,2,3, ...

  7. 【剑指offer】7:斐波那契数列

    题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,第1项是1).假设 n≤39 解题思路: 斐波拉契数列:1,1,2,3,5,8--,总结 ...

  8. 剑指offer——矩阵覆盖(斐波那契变形)

    ****感觉都可以针对斐波那契写一个变形题目的集合了****** 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? cl ...

  9. 【剑指offer】面试题 10. 斐波那契数列

    面试题 10. 斐波那契数列 题目一:求斐波那契数列的第n项 题目描述:求斐波拉契数列的第n项 写出一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项.斐波拉契数列定义如下: C++ 实现 ...

  10. 剑指offer编程题Java实现——面试题9斐波那契数列

    题目:写一个函数,输入n,求斐波那契数列的第n项. package Solution; /** * 剑指offer面试题9:斐波那契数列 * 题目:写一个函数,输入n,求斐波那契数列的第n项. * 0 ...

随机推荐

  1. CSS小知识---回到顶部

    所需js文件 <script type="text/javascript" src="js/jquery-1.11.3.js"></scrip ...

  2. jst格式化日期

    jsp页面需引入fmt标签:<taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"> ...

  3. linux 配置tensorflow 全过程记录

    前几天刚下一个deepin系统,是基于linux 内核的,界面的设计有些mac的feel 感觉还是挺不错的,之后就赶紧配置了一下tensorflow ,尽管之前配置过,但是这次还是遇到点儿问题,所以说 ...

  4. MapReduce:实现文档倒序排序,且字符串拼接+年+月+日

    写出MapReduce程序完成以下功能. input1: -- a -- b -- c -- d -- a -- b -- c -- c input2: -- b -- a -- b -- d -- ...

  5. SpringBoot 表单验证

    Valid 注解 JSR 303 校验框架注解类: • @NotNull 注解元素必须是非空 • @Null 注解元素必须是空 • @Digits 验证数字构成是否合法 • @Future 验证是否在 ...

  6. m2eclipse插件——添加依赖不显示搜索结果

    使用Eclipse,安装m2eclipse插件之后,选中Maven项目的pom文件,添加依赖,点击“Add Dependency”的时候,输入要检索的jar包名称,search result却一直为空 ...

  7. php。。。

    我可能不会是一个合格的程序员,因为不够专一,学的种类多,精通的却很少,现在我要做为一个php程序员,专注起航了...接下来半年全力以赴,做出成绩吧. 另外之前的狂刷要一千题也要开始每天更新了,最难的就 ...

  8. hdu 5777 domino 贪心

    domino Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Problem ...

  9. try中的return语句,在finally前执行还是在finally后执行?

    try中有的return语句,也有finally语句,请问finally是否执行,如果执行的话finally在return前执行还是在return后执行? 答案:finally的内容会执行,并且在re ...

  10. Pandas字符串和文本数据

    在本章中,我们将使用基本系列/索引来讨论字符串操作.在随后的章节中,将学习如何将这些字符串函数应用于数据帧(DataFrame). Pandas提供了一组字符串函数,可以方便地对字符串数据进行操作. ...