对于每一个i找到最近的j满足最大值-最小值>K,对答案的贡献为j-i,用单调队列维护最值即可

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
int n,m,l,r,L,R,K;
int q[maxn],Q[maxn],a[maxn];
ll ans;
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int main()
{
read(n);read(K);
for(int i=;i<=n;i++)read(a[i]);
l=;r=;L=;R=;
for(int i=,j=;i<=n;i++)
{
while(j<=n)
{
while(l<=r&&a[q[r]]>=a[j])r--;
while(L<=R&&a[Q[R]]<=a[j])R--;
q[++r]=Q[++R]=j;
if(a[Q[L]]-a[q[l]]>K)break;
j++;
}
ans+=j-i;
q[l]==i&&(l++);Q[L]==i&&(L++);
}
printf("%lld\n",ans);
return ;
}

51nod 1275 连续子段的差异(twopointer+单调队列)的更多相关文章

  1. 51nod 1275 连续字段的差异(单调队列)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1275 题意: 思路: 固定某个端点,然后去寻找满足能满足要求的最大区间, ...

  2. 51nod 1275 连续子段的差异

    题目看这里 若[i,j]符合要求,那么[i,j]内的任何连续的子段都是符合要求的.我们可以枚举i,找到能合格的最远的j,然后ans+=(j-i+1). 那么问题就转换成了:在固定i的情况下,如何判断j ...

  3. 51Nod 算法马拉松28 C题 栈 单调队列

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - 51Nod1952 题意概括 有一个栈,有3种操作: Ο 从栈顶加入一个元素 Ο 从栈底加入一个元素 Ο 从栈 ...

  4. HDU1024 最大M子段和问题 (单调队列优化)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  5. [POI2010]PIL-Pilots 单调队列

    [POI2010]PIL-Pilots 题意: 给定一个序列和一个数值k,求一段连续最大区间是的最大值与最小值之差小于k: 思路: 因为要维护最大值和最小值并且连续,使用两个单调队列分别同时维护最大最 ...

  6. 51nod 1050 循环数组最大子段和 单调队列优化DP

    题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1050 这个呢,这个题之前 求一遍最大值  然后求一遍最小值 ...

  7. 【bzoj5089】最大连续子段和 分块+单调栈维护凸包

    题目描述 给出一个长度为 n 的序列,要求支持如下两种操作: A  l  r  x :将 [l,r] 区间内的所有数加上 x : Q  l  r : 询问 [l,r] 区间的最大连续子段和. 其中,一 ...

  8. HDU 1003:Max Sum(DP,连续子段和)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  9. hdu3415:最大k子段和,单调队列

    题目大意:给定长度为n的数组,求出最大的区间和,其中区间长度在[1,k]之间 分析: 学动态规划的时候我们会遇到一个经典问题 最大子段和,这个题跟最大子段和很类似 不同的是区间的长度有限制,无法用原算 ...

随机推荐

  1. Qt-QML-Slider-滑块-Style-后继

    首先了,先把我上篇文章的demo准备好,不过我上次写的被我删除了,这次就重新写了一个,上代码 import QtQuick 2.5 import QtQuick.Controls 1.4 import ...

  2. 词嵌入向量WordEmbedding

    词嵌入向量WordEmbedding的原理和生成方法   WordEmbedding 词嵌入向量(WordEmbedding)是NLP里面一个重要的概念,我们可以利用WordEmbedding将一个单 ...

  3. LeetCode 135——分发糖果

    1. 题目 2. 解答 初始化左序奖赏全为 1,从左往右遍历,如果右边的人评分比左边高,右边奖赏比左边奖赏增 1. 初始化右序奖赏全为 1,从右往左遍历,如果左边的人评分比右边高,左边奖赏比右边奖赏增 ...

  4. vs2008 c#项目调试dll源码,问题:“若要调试此模块,请将其项目生成配置更改为“调试”模式” 的解决方案

    情况: 1:有程序 Trans.exe 的vs2008 c#源码:Trans.exe项目里引用了 Water.dll: 2:有Water.dll的项目源码: 3:想在Trans.exe里调试Water ...

  5. .Net并行编程 - Reactive Extensions(Rx)并发浅析

    关于Reactive Extensions(Rx) 关于Reactive Extensions(Rx),先来看一下来自微软的官方描述: The Reactive Extensions (Rx) is ...

  6. Windows下PATH等环境变量详解(转载)

    本文转载自http://legend2011.blog.51cto.com/3018495/553255 在学习JAVA的过程中,涉及到多个环境变量(environment variable)的概念, ...

  7. selenium中的三种等待方式(显示等待WebDriverWait()、隐式等待implicitly()、强制等待sleep())---基于python

    我们在实际使用selenium或者appium时,等待下个等待定位的元素出现,特别是web端加载的过程,都需要用到等待,而等待方式的设置是保证脚本稳定有效运行的一个非常重要的手段,在selenium中 ...

  8. iOS- <项目笔记> UIApplication常见属性与方法总结

    UIApplication 1.简介 1> 整个应用程序的象征,一个应用程序就一个UIApplication对象,使用了单例设计模式 2> 通过[UIApplication sharedA ...

  9. pfx 证书怎么打开

    其实双击就能够自动运行导入向导的 不行的话使用我的办法: 单击开始--运行--里输入mmc 然后单击文件--选择添加删除管理单元--再选择添加--拉动滚动条找到证书一项,点击添加再点击完成(不用做任何 ...

  10. Zigbee安全基础篇Part.3

    原文地址: https://www.4hou.com/wireless/14294.html 导语:在之前的文章中提供了ZigBee协议及其安全功能的简要概述.在本文中,我们将探讨可在ZigBee网络 ...