/**
* sample采样倾斜key单独进行join
*/ JavaPairRDD<Long, String> sampledRDD = userid2PartAggrInfoRDD.sample(false, 0.1, 9); JavaPairRDD<Long, Long> mappedSampledRDD = sampledRDD.mapToPair( new PairFunction<Tuple2<Long,String>, Long, Long>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<Long, Long> call(Tuple2<Long, String> tuple)
throws Exception {
return new Tuple2<Long, Long>(tuple._1, 1L);
} }); JavaPairRDD<Long, Long> computedSampledRDD = mappedSampledRDD.reduceByKey( new Function2<Long, Long, Long>() { private static final long serialVersionUID = 1L; @Override
public Long call(Long v1, Long v2) throws Exception {
return v1 + v2;
} }); JavaPairRDD<Long, Long> reversedSampledRDD = computedSampledRDD.mapToPair( new PairFunction<Tuple2<Long,Long>, Long, Long>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<Long, Long> call(Tuple2<Long, Long> tuple)
throws Exception {
return new Tuple2<Long, Long>(tuple._2, tuple._1);
} }); final Long skewedUserid = reversedSampledRDD.sortByKey(false).take(1).get(0)._2; JavaPairRDD<Long, String> skewedRDD = userid2PartAggrInfoRDD.filter( new Function<Tuple2<Long,String>, Boolean>() { private static final long serialVersionUID = 1L; @Override
public Boolean call(Tuple2<Long, String> tuple) throws Exception {
return tuple._1.equals(skewedUserid);
} }); JavaPairRDD<Long, String> commonRDD = userid2PartAggrInfoRDD.filter( new Function<Tuple2<Long,String>, Boolean>() { private static final long serialVersionUID = 1L; @Override
public Boolean call(Tuple2<Long, String> tuple) throws Exception {
return !tuple._1.equals(skewedUserid);
} }); JavaPairRDD<String, Row> skewedUserid2infoRDD = userid2InfoRDD.filter( new Function<Tuple2<Long,Row>, Boolean>() { private static final long serialVersionUID = 1L; @Override
public Boolean call(Tuple2<Long, Row> tuple) throws Exception {
return tuple._1.equals(skewedUserid);
} }).flatMapToPair(new PairFlatMapFunction<Tuple2<Long,Row>, String, Row>() { private static final long serialVersionUID = 1L; @Override
public Iterable<Tuple2<String, Row>> call(
Tuple2<Long, Row> tuple) throws Exception {
Random random = new Random();
List<Tuple2<String, Row>> list = new ArrayList<Tuple2<String, Row>>(); for(int i = 0; i <; i++) {
int prefix = random.nextInt(100);
list.add(new Tuple2<String, Row>(prefix + "_" + tuple._1, tuple._2));
} return list;
} }); JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD1 = skewedRDD.mapToPair( new PairFunction<Tuple2<Long,String>, String, String>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, String> call(Tuple2<Long, String> tuple)
throws Exception {
Random random = new Random();
int prefix = random.nextInt(100);
return new Tuple2<String, String>(prefix + "_" + tuple._1, tuple._2);
} }).join(skewedUserid2infoRDD).mapToPair( new PairFunction<Tuple2<String,Tuple2<String,Row>>, Long, Tuple2<String, Row>>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<Long, Tuple2<String, Row>> call(
Tuple2<String, Tuple2<String, Row>> tuple)
throws Exception {
long userid = Long.valueOf(tuple._1.split("_")[1]);
return new Tuple2<Long, Tuple2<String, Row>>(userid, tuple._2);
} }); JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD2 = commonRDD.join(userid2InfoRDD); JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD = joinedRDD1.union(joinedRDD2); JavaPairRDD<String, String> sessionid2FullAggrInfoRDD = joinedRDD.mapToPair( new PairFunction<Tuple2<Long,Tuple2<String,Row>>, String, String>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, String> call(
Tuple2<Long, Tuple2<String, Row>> tuple)
throws Exception {
String partAggrInfo = tuple._2._1;
Row userInfoRow = tuple._2._2; String sessionid = StringUtils.getFieldFromConcatString(
partAggrInfo, "\\|", Constants.FIELD_SESSION_ID); int age = userInfoRow.getInt(3);
String professional = userInfoRow.getString(4);
String city = userInfoRow.getString(5);
String sex = userInfoRow.getString(6); String fullAggrInfo = partAggrInfo + "|"
+ Constants.FIELD_AGE + "=" + age + "|"
+ Constants.FIELD_PROFESSIONAL + "=" + professional + "|"
+ Constants.FIELD_CITY + "=" + city + "|"
+ Constants.FIELD_SEX + "=" + sex; return new Tuple2<String, String>(sessionid, fullAggrInfo);
} });

sample采样倾斜key并单独进行join代码的更多相关文章

  1. MongoDB With Spark遇到的2个错误,不能初始化和sample重复的key

    1.$sample stage could not find a non-duplicate document while using a random cursor 这个问题比较难解决,因为我用mo ...

  2. 图片文档倾斜矫正算法 附完整c代码

    2年前在学习图像算法的时候看到一个文档倾斜矫正的算法. 也就是说能将一些文档图像进行旋转矫正, 当然这个算法一般用于一些文档扫描软件做后处理 或者用于ocr 文字识别做前处理. 相关的关键词: 抗倾斜 ...

  3. 使用随机数以及扩容表进行join代码

    /** * 使用随机数和扩容表进行join */ JavaPairRDD<String, Row> expandedRDD = userid2InfoRDD.flatMapToPair( ...

  4. split().reverse().join()代码解析

    split() 方法用于把一个字符串分割成字符串数组. reverse() 方法用于颠倒数组中元素的顺序. join() 方法用于把数组中的所有元素放入一个字符串.

  5. git 设置 key 到服务器,同步代码不需要输入用户名和密码

    1  ssh-keygen -t rsa 2  vim ~/.ssh/id_rsa.pub 3. 添加到git 服务器,这样同步代码就不需要输入密码

  6. Spark实践 -- 性能优化基础

    性能调优相关的原理讲解.经验总结: 掌握一整套Spark企业级性能调优解决方案:而不只是简单的一些性能调优技巧. 针对写好的spark作业,实施一整套数据倾斜解决方案:实际经验中积累的数据倾斜现象的表 ...

  7. 最完整的数据倾斜解决方案(spark)

    一.了解数据倾斜 数据倾斜的原理: 在执行shuffle操作的时候,按照key,来进行values的数据的输出,拉取和聚合.同一个key的values,一定是分配到一个Reduce task进行处理. ...

  8. spark性能调优06-数据倾斜处理

    1.数据倾斜 1.1 数据倾斜的现象 现象一:大部分的task都能快速执行完,剩下几个task执行非常慢 现象二:大部分的task都能快速执行完,但总是执行到某个task时就会报OOM,JVM out ...

  9. Spark性能调优之解决数据倾斜

    Spark性能调优之解决数据倾斜 数据倾斜七种解决方案 shuffle的过程最容易引起数据倾斜 1.使用Hive ETL预处理数据    • 方案适用场景:如果导致数据倾斜的是Hive表.如果该Hiv ...

随机推荐

  1. easyui的解析器Parser

    平时使用easyui做框架开发时,都知道easyui的模块组件能通过属性方法或js方法来渲染,本质上是通过parser解析器来处理实现的,因为多数情况下都是自动触发完成整个页面的解析,所以没有感觉到它 ...

  2. pt-variable-advisor(percona toolkit)

    pt-variable-advisor是一款分析参数,并且给出参数设置建议的一款PT工具,基本语法 pt-variable-advisor [OPTIONS] [DSN] 如下我们可以获取本地参数的一 ...

  3. Web API 2 入门——使用ASP.NET Web API和Angular.js构建单页应用程序(SPA)(谷歌翻译)

    在这篇文章中 概观 演习 概要 由网络营 下载网络营训练包 在传统的Web应用程序中,客户机(浏览器)通过请求页面启动与服务器的通信.然后,服务器处理请求,并将页面的HTML发送给客户端.在与页面的后 ...

  4. Oracle基本命令(一)

    1.create user username identified by password;//建用户名和密码oracle ,oracle 2.grant connect,resource,dba t ...

  5. PowerDesigner表设计转化为excel或者markdown

    本文目的:知道有这种能够写脚本的方式减少工作量 写VBS脚本 导出

  6. case选择语句

    #!/bin/bash   PS3="please select menu:"   select  i  in "Apache" "Mysql&quo ...

  7. Spring注解开发-全面解析常用注解使用方法之组件注册

    目录 1. @Configuration 2. @ComponentScan excludeFilters includeFilters 使用自定义TypeFilter 3. @Bean @Scope ...

  8. tree 向下查找 (删除整条tree)

    需求:通过点击获取需要删除的id(即获取到整条信息),如果该条数据没有子集,通过id删除即可,如果有子集,则该数据下所有的子集都需要删 删除后页面的数据更新在 下一篇 讲解 1 const id =' ...

  9. eigenMatrix

    #include <iostream> using namespace std; #include <ctime> // Eigen 部分 #include <Eigen ...

  10. java中i = i++问题

    今天偶然呗问到了一个java中自增运算符的问题,涉及到了堆栈,觉得挺有趣的把它记录下来. int i=0;      i=i++;      结果i是多少?      这是一个经常被提及的问题,答案一 ...