/**
* sample采样倾斜key单独进行join
*/ JavaPairRDD<Long, String> sampledRDD = userid2PartAggrInfoRDD.sample(false, 0.1, 9); JavaPairRDD<Long, Long> mappedSampledRDD = sampledRDD.mapToPair( new PairFunction<Tuple2<Long,String>, Long, Long>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<Long, Long> call(Tuple2<Long, String> tuple)
throws Exception {
return new Tuple2<Long, Long>(tuple._1, 1L);
} }); JavaPairRDD<Long, Long> computedSampledRDD = mappedSampledRDD.reduceByKey( new Function2<Long, Long, Long>() { private static final long serialVersionUID = 1L; @Override
public Long call(Long v1, Long v2) throws Exception {
return v1 + v2;
} }); JavaPairRDD<Long, Long> reversedSampledRDD = computedSampledRDD.mapToPair( new PairFunction<Tuple2<Long,Long>, Long, Long>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<Long, Long> call(Tuple2<Long, Long> tuple)
throws Exception {
return new Tuple2<Long, Long>(tuple._2, tuple._1);
} }); final Long skewedUserid = reversedSampledRDD.sortByKey(false).take(1).get(0)._2; JavaPairRDD<Long, String> skewedRDD = userid2PartAggrInfoRDD.filter( new Function<Tuple2<Long,String>, Boolean>() { private static final long serialVersionUID = 1L; @Override
public Boolean call(Tuple2<Long, String> tuple) throws Exception {
return tuple._1.equals(skewedUserid);
} }); JavaPairRDD<Long, String> commonRDD = userid2PartAggrInfoRDD.filter( new Function<Tuple2<Long,String>, Boolean>() { private static final long serialVersionUID = 1L; @Override
public Boolean call(Tuple2<Long, String> tuple) throws Exception {
return !tuple._1.equals(skewedUserid);
} }); JavaPairRDD<String, Row> skewedUserid2infoRDD = userid2InfoRDD.filter( new Function<Tuple2<Long,Row>, Boolean>() { private static final long serialVersionUID = 1L; @Override
public Boolean call(Tuple2<Long, Row> tuple) throws Exception {
return tuple._1.equals(skewedUserid);
} }).flatMapToPair(new PairFlatMapFunction<Tuple2<Long,Row>, String, Row>() { private static final long serialVersionUID = 1L; @Override
public Iterable<Tuple2<String, Row>> call(
Tuple2<Long, Row> tuple) throws Exception {
Random random = new Random();
List<Tuple2<String, Row>> list = new ArrayList<Tuple2<String, Row>>(); for(int i = 0; i <; i++) {
int prefix = random.nextInt(100);
list.add(new Tuple2<String, Row>(prefix + "_" + tuple._1, tuple._2));
} return list;
} }); JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD1 = skewedRDD.mapToPair( new PairFunction<Tuple2<Long,String>, String, String>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, String> call(Tuple2<Long, String> tuple)
throws Exception {
Random random = new Random();
int prefix = random.nextInt(100);
return new Tuple2<String, String>(prefix + "_" + tuple._1, tuple._2);
} }).join(skewedUserid2infoRDD).mapToPair( new PairFunction<Tuple2<String,Tuple2<String,Row>>, Long, Tuple2<String, Row>>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<Long, Tuple2<String, Row>> call(
Tuple2<String, Tuple2<String, Row>> tuple)
throws Exception {
long userid = Long.valueOf(tuple._1.split("_")[1]);
return new Tuple2<Long, Tuple2<String, Row>>(userid, tuple._2);
} }); JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD2 = commonRDD.join(userid2InfoRDD); JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD = joinedRDD1.union(joinedRDD2); JavaPairRDD<String, String> sessionid2FullAggrInfoRDD = joinedRDD.mapToPair( new PairFunction<Tuple2<Long,Tuple2<String,Row>>, String, String>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, String> call(
Tuple2<Long, Tuple2<String, Row>> tuple)
throws Exception {
String partAggrInfo = tuple._2._1;
Row userInfoRow = tuple._2._2; String sessionid = StringUtils.getFieldFromConcatString(
partAggrInfo, "\\|", Constants.FIELD_SESSION_ID); int age = userInfoRow.getInt(3);
String professional = userInfoRow.getString(4);
String city = userInfoRow.getString(5);
String sex = userInfoRow.getString(6); String fullAggrInfo = partAggrInfo + "|"
+ Constants.FIELD_AGE + "=" + age + "|"
+ Constants.FIELD_PROFESSIONAL + "=" + professional + "|"
+ Constants.FIELD_CITY + "=" + city + "|"
+ Constants.FIELD_SEX + "=" + sex; return new Tuple2<String, String>(sessionid, fullAggrInfo);
} });

sample采样倾斜key并单独进行join代码的更多相关文章

  1. MongoDB With Spark遇到的2个错误,不能初始化和sample重复的key

    1.$sample stage could not find a non-duplicate document while using a random cursor 这个问题比较难解决,因为我用mo ...

  2. 图片文档倾斜矫正算法 附完整c代码

    2年前在学习图像算法的时候看到一个文档倾斜矫正的算法. 也就是说能将一些文档图像进行旋转矫正, 当然这个算法一般用于一些文档扫描软件做后处理 或者用于ocr 文字识别做前处理. 相关的关键词: 抗倾斜 ...

  3. 使用随机数以及扩容表进行join代码

    /** * 使用随机数和扩容表进行join */ JavaPairRDD<String, Row> expandedRDD = userid2InfoRDD.flatMapToPair( ...

  4. split().reverse().join()代码解析

    split() 方法用于把一个字符串分割成字符串数组. reverse() 方法用于颠倒数组中元素的顺序. join() 方法用于把数组中的所有元素放入一个字符串.

  5. git 设置 key 到服务器,同步代码不需要输入用户名和密码

    1  ssh-keygen -t rsa 2  vim ~/.ssh/id_rsa.pub 3. 添加到git 服务器,这样同步代码就不需要输入密码

  6. Spark实践 -- 性能优化基础

    性能调优相关的原理讲解.经验总结: 掌握一整套Spark企业级性能调优解决方案:而不只是简单的一些性能调优技巧. 针对写好的spark作业,实施一整套数据倾斜解决方案:实际经验中积累的数据倾斜现象的表 ...

  7. 最完整的数据倾斜解决方案(spark)

    一.了解数据倾斜 数据倾斜的原理: 在执行shuffle操作的时候,按照key,来进行values的数据的输出,拉取和聚合.同一个key的values,一定是分配到一个Reduce task进行处理. ...

  8. spark性能调优06-数据倾斜处理

    1.数据倾斜 1.1 数据倾斜的现象 现象一:大部分的task都能快速执行完,剩下几个task执行非常慢 现象二:大部分的task都能快速执行完,但总是执行到某个task时就会报OOM,JVM out ...

  9. Spark性能调优之解决数据倾斜

    Spark性能调优之解决数据倾斜 数据倾斜七种解决方案 shuffle的过程最容易引起数据倾斜 1.使用Hive ETL预处理数据    • 方案适用场景:如果导致数据倾斜的是Hive表.如果该Hiv ...

随机推荐

  1. Oracle归档模式和非归档模式的区别

    一.查看oracle数据库是否为归档模式: Sql代码1.select name,log_mode from v$database; NAME LOG_MODE ------------------ ...

  2. C#调用Excel VBA宏[转载]

    原文地址:https://www.cnblogs.com/heekui/archive/2008/03/30/1129355.html 近日的一系列工作是做网站的营运维护,因此做了大量的支持工具.有E ...

  3. 【Leetcode】【Medium】Longest Substring Without Repeating Characters

    Given a string, find the length of the longest substring without repeating characters. For example, ...

  4. .net 面向对象程序设计深入](1)UML

    1.UML简介 Unified Modeling Language (UML)又称统一建模语言或标准建模语言. 简单说就是以图形方式表现模型,根据不同模型进行分类,在UML 2.0中有13种图,以下是 ...

  5. dubbox源码分析(一)-服务的启动与初始化

    程序猿成长之路少不了要学习和分析源码的.最近难得能静得下心来,就针对dubbox为目标开始进行源码分析. [服务提供方] 步骤 调用顺序 备注 容器启动 com.alibaba.dubbo.conta ...

  6. webpack学习(三)html-webpack-plugin插件

    一.html-webpack-plugin插件 简单创建 HTML 文件,用于服务器访问 例如:我们要为输出文件添加哈希值标记,避免老的不变的文件重新加载,避免新修改的文件受缓存影响. 在前后两次在终 ...

  7. SAP S/4HANA extensibility扩展原理介绍

    SAP产品总的extensibility扩展原理介绍: 看Jerry这篇文章. SAP Cloud for Customer Extensibility的设计与实现 我的同事Boris写的. 而本文是 ...

  8. vbox安装 ubuntu server 后 安装增强包

    用vbox安装虚拟机系统如果不装增强包, 有很多东西就有点不好用-用vbox安装ubuntu server时,点击菜单中的安装增强功能.因为ubuntu server版本没有ui,所以不能很方便滴找到 ...

  9. JAVA串口开发帮助类分享-及写在马年末

    摘要: 在系统集成开发过程中,存在着各式的传输途径,其中串口经常因其安全性高获得了数据安全传输的重用,通过串口传输可以从硬件上保证数据传输的单向性,这是其它介质所不具备的物理条件.下面我就串口java ...

  10. 理解Underscore中的_.template函数

    Underscore中提供了_.template函数实现模板引擎功能,它可以将JSON数据源中的数据对应的填充到提供的字符串中去,类似于服务端渲染的模板引擎.接下来看一下Underscore是如何实现 ...