【Manacher算法】poj3974 Palindrome
Manacher算法教程:http://blog.csdn.net/ggggiqnypgjg/article/details/6645824
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
char b[],a[];
char tmp[];
int n,f[],zu;//f[i]表示插入一堆#后,以i为中心的最长回文子串の半径长度,
//故其减1后就是原串的最长回文子串的答案
//也是原串中以i为开端的最长回文串の长度。
int id,maxid,ans;
int main()
{
while()
{
scanf("%s",tmp);
if(tmp[]=='E')
break;
zu++;
n=strlen(tmp);
memset(b,,sizeof(b));
memset(a,,sizeof(a));
memset(f,,sizeof(f));
ans=id=maxid=;
for(int i=;i<=n;i++)
b[i]=tmp[i-];
a[]='#';
for(int i=;i<=n;i++)
{
a[i<<]=b[i];
a[i<<|]='#';
}
a[]='-';
a[(n+)<<]='+';
n=n<<|;
f[]=;
id=;//用id这个变量记下取得这个最优maxid时的id值
//即右端扩展到maxid+1时,该回文串中心的位置
maxid=;//maxid是曾经扫描到的回文串中,匹配到的最远的位置+1
for(int i=;i<=n;i++)
{
if(maxid>i)//算法核心:防止重复匹配
f[i]=min(f[(id<<)-i]//以 关于id的对称点 为中心的的最长回文串长
//因为,分别在id两侧的两半回文串是完全一样的
,maxid-i // 但是,以id的对称点为中心的最长回文串有可能超出
//以id为中心的最长回文串的范围,所以,限制其无法超出
//此范围
); //(id<<1)-i 为 i 关于 id 的对称点
else
f[i]=;//否则f[i]=1
for(;a[i+f[i]]==a[i-f[i]];f[i]++);
ans=max(ans,f[i]-);
if(f[i]+i>maxid)//注意是f[i]+i,不是f[i]+i-1,因为maxid是匹配到的最远位置+1
{
maxid=f[i]+i;
id=i;//若以i为中心时,回文串可以扩展到更远的地方,更新id
}
}
printf("Case %d: %d\n",zu,ans);
} return ;
}
【Manacher算法】poj3974 Palindrome的更多相关文章
- Palindrome(poj3974)(manacher算法)
http://poj.org/problem?id=3974 Palindrome Time Limit: 15000MSMemory Limit: 65536K Total Submissions: ...
- POJ3974 Palindrome (manacher算法)
题目大意就是说在给定的字符串里找出一个长度最大的回文子串. 才开始接触到manacher,不过这个算法的确很强大,这里转载了一篇有关manacher算法的讲解,可以去看看:地址 神器: #includ ...
- Palindrome(最长回文串manacher算法)O(n)
Palindrome Time Limit:15000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- Codeforces Beta Round #7 D. Palindrome Degree manacher算法+dp
题目链接: http://codeforces.com/problemset/problem/7/D D. Palindrome Degree time limit per test1 secondm ...
- 利用Manacher算法寻找字符串中的最长回文序列(palindrome)
寻找字符串中的最长回文序列和所有回文序列(正向和反向一样的序列,如aba,abba等)算是挺早以前提出的算法问题了,最近再刷Leetcode算法题的时候遇到了一个(题目),所以就顺便写下. 如果用正反 ...
- POJ 3974 Palindrome 字符串 Manacher算法
http://poj.org/problem?id=3974 模板题,Manacher算法主要利用了已匹配回文串的对称性,对前面已匹配的回文串进行利用,使时间复杂度从O(n^2)变为O(n). htt ...
- POJ3974 Palindrome Manacher 最长回文子串模板
这道题可以$O(nlogn)$,当然也可以$O(n)$做啦$qwq$ $O(nlogn)$的思路是枚举每个回文中心,通过哈希预处理出前缀和后缀哈希值备用,然后二分回文串的长度,具体的就是判断在长度范围 ...
- POJ----(3974 )Palindrome [最长回文串]
Time Limit: 15000MS Memory Limit: 65536K Total Submissions: 5121 Accepted: 1834 Description Andy ...
- hdu 3068 最长回文 manacher算法(视频)
感悟: 首先我要Orz一下qsc,我在网上很难找到关于acm的教学视频,但偶然发现了这个,感觉做的很好,链接:戳戳戳 感觉这种花费自己时间去教别人的人真的很伟大. manacher算法把所有的回文都变 ...
随机推荐
- Git 常用命令(二)
用 git init 在目录中创建新的 Git 仓库. $ mkdir test $ cd test/ $ git init Initialized empty Git repository in ...
- python3中处理url异常
import urllib.request import urllib.error url = 'http://c.telunyun.com/Chart/getJsonData?market=1' d ...
- Python学习笔记 - day10 - 正则表达式
正则表达式 字符串是编程时涉及到的最多的一种数据结构,对字符串进行操作的需求几乎无处不在.比如判断一个字符串是否是合法的Email地址,虽然可以编程提取@前后的子串,再分别判断是否是单词和域名,但这样 ...
- 【Python学习笔记】Coursera课程《Python Data Structures》 密歇根大学 Charles Severance——Week6 Tuple课堂笔记
Coursera课程<Python Data Structures> 密歇根大学 Charles Severance Week6 Tuple 10 Tuples 10.1 Tuples A ...
- CNN中已知input_size、kernel_size、padding、stide计算output公式的理解
在进行卷积运算和池化的时候,对于输入图像大小为input_size,给定kernel_size.padding.stride,计算得出output_size为: output_size =1+ (in ...
- 创建数据库表的SQL语句
创建表.视图.索引的sql语句如下: CREAT TABLE (列名,数据类型,约束) create view(创建视图) create index (创建索引) 1.primary key(主键) ...
- Can't load standard profile: GRAY.pf
报错: java.lang.IllegalArgumentException: Can't load standard profile: GRAY.pf at java.awt.color.ICC_P ...
- 【Mac电脑】Jenkins的安装
1.JDK自己下载安装喽, 2.下载Jenkins 下载路径:https://mirrors.tuna.tsinghua.edu.cn/jenkins/war-stable/2.121.1/jenki ...
- 通过IP地址和子网掩码计算主机数
知道ip地址和子网掩码后可以算出: 1. 网络地址 2. 广播地址 3. 地址范围 4. 本网有几台主机 例1:下面例子IP地址为192·168·100·5 子网掩码是255·255·255·0.算出 ...
- gulp-babel,es6转es5
npm install --save-dev gulp-babel npm install --save-dev babel-preset-es2015 var gulp = require(&quo ...