传送门:Count Color

Description

Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds of problems. Here, we get a new problem.

There is a very long board with length L centimeter, L is a positive integer, so we can evenly divide the board into L segments, and they are labeled by 1, 2, ... L from left to right, each is 1 centimeter long. Now we have to color the board - one segment with only one color. We can do following two operations on the board:

1. "C A B C" Color the board from segment A to segment B with color C. 
2. "P A B" Output the number of different colors painted between segment A and segment B (including).

In our daily life, we have very few words to describe a color (red, green, blue, yellow…), so you may assume that the total number of different colors T is very small. To make it simple, we express the names of colors as color 1, color 2, ... color T. At the beginning, the board was painted in color 1. Now the rest of problem is left to your.

Input

First line of input contains L (1 <= L <= 100000), T (1 <= T <= 30) and O (1 <= O <= 100000). Here O denotes the number of operations. Following O lines, each contains "C A B C" or "P A B" (here A, B, C are integers, and A may be larger than B) as an operation defined previously.

Output

Ouput results of the output operation in order, each line contains a number.

Sample Input

2 2 4
C 1 1 2
P 1 2
C 2 2 2
P 1 2

Sample Output

2
1

Source

题意:

给定一个长度为N(N <= 100000)的数列Si,紧接着Q(Q <= 100000)条操作,操作 形式有两种: 1. "C A B C" 将A到B的数都染成C这种颜色。 2. "P A B" 输出A和B之间不同颜色的数目。

题解:

首先要想到的就是线段树,经典的区间维护问题,这里需要用到一个叫懒惰标记的方法,

这样可以大大缩短更新所需要的时间

这里还有一个巧妙地地方,就是区间染色的个数,这个可以用二进制位来解决,最多30种,用

一个int就可以存下,每个位代表一个颜色,区间上的颜色可以取其子区间或和(详细看代码)。

关于懒惰标记:

lazy是一个很经典的思想。所谓lazy,就是懒惰,每次不想做太多,只要插入的区间完

全覆盖了当前结点所管理的区间就不再往下做了,在当前结点上打上一个lazy标记,然

后直接返回。下次如果遇到当前结点有lazy标记的话,直接传递给两个儿子,自己的标

记清空。这样做肯定是正确的。我们以染色为例,可以这样想,如果当前结点和它的子

孙都有lazy标记的话,必定是子孙的先标记,因为如果是自己先标记,那么在访问子孙

的时候,必定会将自己的标记下传给儿子,而自己的标记必定会清空,那么lazy标记也

就不存在了。所以可以肯定,当前的lazy标记必定覆盖了子孙的,所以直接下传即可,

不需要做任何判断

代码:

#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <deque>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <set>
#include <utility>
#include <vector>
#define mem(arr, num) memset(arr, 0, sizeof(arr))
#define _for(i, a, b) for (int i = a; i <= b; i++)
#define __for(i, a, b) for (int i = a; i >= b; i--)
#define IO                     \
  ios::sync_with_stdio(false); \
  cin.tie();                  \
  cout.tie();
using namespace std;
typedef long long ll;
const ll inf = 0x3f3f3f3f;
;
const ll mod = 1000000007LL;
 << ;
int dat[N];
void down(int k)
{
    dat[k << ] = dat[k <<  | ] = dat[k];
}
void update(int a, int b, int k, int l, int r, int c)
{
    if (b < l || a > r)
        ;
    else if (a <= l && b >= r)
    {
        dat[k] =  << (c - );
    }
    else if (a <= r && b >= l)
    {
        if (log2(dat[k]) == (int)log2(dat[k])) down(k);
        update(a, b, k << , l, (l + r) / , c);
        update(a, b, k <<  | , (l + r) /  + , r, c);
        dat[k] = dat[k << ] | dat[k <<  | ];
    }
}
int query(int a, int b, int k, int l, int r)
{
    ;
    if (a <= l && b >= r)
    {
        return dat[k];
    }
    else if (a <= r && b >= l)
    {
        if (log2(dat[k]) == (int)log2(dat[k])) down(k);
        , l, (l + r) / ) | query(a, b, k <<  | , (l + r) /  + , r);
    }

}
int main()
{
    int n, t, o, a, b, c;
    while (scanf("%d%d%d", &n, &t, &o) != EOF)
    {
        mem(dat,);
        dat[] = ;
        _for(i, , o)
        {
            char op;
            getchar();
            scanf("%c", &op);
            if (op == 'C')
            {
                scanf("%d%d%d", &a, &b, &c);
                if (a > b) swap(a, b);
                update(a, b, , , n, c);
            }
            else
            {
                scanf("%d%d", &a, &b);
                if (a > b) swap(a, b);
                , , n);
                ;
                ), sum++;
                printf("%d\n", sum);
            }
        }
    }
    ;
}
/*
8 5 30
C 1 3 2
C 2 4 3
C 3 5 4
C 4 6 5
C 5 7 6
C 6 8 7
P 1 8

*/

POJ 2777 Count Color(线段树 + 染色问题)的更多相关文章

  1. poj 2777 Count Color(线段树区区+染色问题)

    题目链接:  poj 2777 Count Color 题目大意:  给出一块长度为n的板,区间范围[1,n],和m种染料 k次操作,C  a  b  c 把区间[a,b]涂为c色,P  a  b 查 ...

  2. poj 2777 Count Color(线段树)

    题目地址:http://poj.org/problem?id=2777 Count Color Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  3. poj 2777 Count Color(线段树、状态压缩、位运算)

    Count Color Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 38921   Accepted: 11696 Des ...

  4. poj 2777 Count Color - 线段树 - 位运算优化

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 42472   Accepted: 12850 Description Cho ...

  5. POJ 2777 Count Color(线段树之成段更新)

    Count Color Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33311 Accepted: 10058 Descrip ...

  6. POJ 2777 Count Color (线段树成段更新+二进制思维)

    题目链接:http://poj.org/problem?id=2777 题意是有L个单位长的画板,T种颜色,O个操作.画板初始化为颜色1.操作C讲l到r单位之间的颜色变为c,操作P查询l到r单位之间的 ...

  7. POJ P2777 Count Color——线段树状态压缩

    Description Chosen Problem Solving and Program design as an optional course, you are required to sol ...

  8. POJ 2777 Count Color(段树)

    职务地址:id=2777">POJ 2777 我去.. 延迟标记写错了.标记到了叶子节点上.. . . 这根本就没延迟嘛.. .怪不得一直TLE... 这题就是利用二进制来标记颜色的种 ...

  9. POJ 2777 Count Color(线段树染色,二进制优化)

    Count Color Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 42940   Accepted: 13011 Des ...

  10. poj 2777 Count Color

    题目连接 http://poj.org/problem?id=2777 Count Color Description Chosen Problem Solving and Program desig ...

随机推荐

  1. How GitLab uses Unicorn and unicorn-worker-killer

    GitLab uses Unicorn, a pre-forking Ruby web server, to handle web requests (web browsers and Git HTT ...

  2. Java实现二叉树的先序、中序、后序、层序遍历(递归和非递归)

    二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有前序.中序以及后序三种遍历方法.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易 ...

  3. Freemarker <#list List/Map/Array[] as Object>

    http://blog.csdn.net/ani521smile/article/details/52164366 详细教程链接

  4. YII 框架查询

    基础查询 Customer::find()->one();    此方法返回一条数据: Customer::find()->all();    此方法返回所有数据: Customer::f ...

  5. 【洛谷 P4180】【模板】严格次小生成树[BJWC2010](倍增)

    题目链接 题意如题. 这题作为我们KS图论的T4,我直接打了个很暴力的暴力,骗了20分.. 当然,我们KS里的数据范围远不及这题. 这题我debug了整整一个晚上还没debug出来,第二天早上眼前一亮 ...

  6. Remmarguts' Date(POJ2449+最短路+A*算法)

    题目链接:http://poj.org/problem?id=2449 题目: 题意:求有向图两点间的k短路. 思路:最短路+A*算法 代码实现如下: #include <set> #in ...

  7. bzoj 3343 分块

    因为询问比较少,所以我们可以将n个数分成sqrt(n)个块,每个块用一颗bst存一下,然后对于修改l,r,我们将l,r区间中整块的直接在bst上打一个标签,对于不是整块的我们直接暴力修改,对于询问l, ...

  8. ie8下a标签中的图片出现边框

    1.ie8下a标签中的图片出现边框 <a href="#"><img src="horse.jpg"></a> 效果如图所示 ...

  9. KVM初始化过程

    转载:http://blog.csdn.net/dashulu/article/details/17074675 之前打算整理一下在Guest VM, KVM, QEMU中IO处理的整个流程,通过查阅 ...

  10. fork与printf缓冲问题

    printf输出条件: (1) 调用fflush: (2) 缓冲区满了: (3) 遇到\n \r这些字符 (4) 遇到scanf这些要取缓冲区的: (5) 线程或者进程退出: fork之后会拷贝父进程 ...