题目描述

给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权。其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文。

输入

第一行两个整数N,M。
第二行有N个整数,其中第i个整数表示点i的权值。
后面N-1行每行两个整数(x,y),表示点x到点y有一条边。
最后M行每行两个整数(u,v,k),表示一组询问。

输出

M行,表示每个询问的答案。

样例输入

8 5
105 2 9 3 8 5 7 7
1 2
1 3
1 4
3 5
3 6
3 7
4 8
2 5 1
0 5 2
10 5 3
11 5 4
110 8 2

样例输出

2
8
9
105
7


题解

主席树+最近公共祖先

需要明确主席树的原理:线段树相加减。

那么A到B的路径就是 A到根的路径+B到根的路径-最近公共祖先到根的路径-最近公共祖先的父亲到根的路径。

可以直接在树上建立主席树,注意每棵树是从它父亲的树推来的。

然后查询即可。

注意最后一行千万不能有换行,否则无限PE!

#include <cstdio>
#include <algorithm>
#define N 100001
using namespace std;
struct data
{
int num , rank;
}a[N];
int root[N] , lp[N << 5] , rp[N << 5] , sum[N << 5] , val[N] , top , tot;
int head[N] , to[N << 1] , next[N << 1] , cnt , fa[N] , bl[N] , deep[N] , si[N] , q[N] , tail;
bool cmp1(data a , data b)
{
return a.num < b.num;
}
bool cmp2(data a , data b)
{
return a.rank < b.rank;
}
void add(int x , int y)
{
to[++cnt] = y;
next[cnt] = head[x];
head[x] = cnt;
}
void dfs1(int x)
{
int i;
si[x] = 1;
for(i = head[x] ; i ; i = next[i])
{
if(to[i] != fa[x])
{
fa[to[i]] = x;
deep[to[i]] = deep[x] + 1;
dfs1(to[i]);
si[x] += si[to[i]];
}
}
}
void dfs2(int x , int c)
{
int i , k = 0;
bl[x] = c;
q[++tail] = x;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x] && si[to[i]] > si[k])
k = to[i];
if(k)
{
dfs2(k , c);
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x] && to[i] != k)
dfs2(to[i] , to[i]);
}
}
int getlca(int x , int y)
{
while(bl[x] != bl[y])
{
if(deep[bl[x]] < deep[bl[y]])
swap(x , y);
x = fa[bl[x]];
}
if(deep[x] < deep[y]) return x;
return y;
}
void pushup(int x)
{
sum[x] = sum[lp[x]] + sum[rp[x]];
}
void ins(int x , int &y , int l , int r , int p)
{
y = ++tot;
if(l == r)
{
sum[y] = sum[x] + 1;
return;
}
int mid = (l + r) >> 1;
if(p <= mid) rp[y] = rp[x] , ins(lp[x] , lp[y] , l , mid , p);
else lp[y] = lp[x] , ins(rp[x] , rp[y] , mid + 1 , r , p);
pushup(y);
}
int query(int a , int b , int c , int d , int l , int r , int p)
{
if(l == r) return val[l];
int mid = (l + r) >> 1;
if(sum[lp[a]] + sum[lp[b]] - sum[lp[c]] - sum[lp[d]] >= p) return query(lp[a] , lp[b] , lp[c] , lp[d] , l , mid , p);
else return query(rp[a] , rp[b] , rp[c] , rp[d] , mid + 1 , r , p - sum[lp[a]] - sum[lp[b]] + sum[lp[c]] + sum[lp[d]]);
}
int main()
{
int n , m , i , x , y , z , f , last = 0;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &a[i].num);
a[i].rank = i;
}
sort(a + 1 , a + n + 1 , cmp1);
val[0] = 0x80000000;
for(i = 1 ; i <= n ; i ++ )
{
if(a[i].num != val[top]) val[++top] = a[i].num;
a[i].num = top;
}
sort(a + 1 , a + n + 1 , cmp2);
for(i = 1 ; i < n ; i ++ )
{
scanf("%d%d" , &x , &y);
add(x , y);
add(y , x);
}
dfs1(1);
dfs2(1 , 1);
for(i = 1 ; i <= tail ; i ++ )
ins(root[fa[q[i]]] , root[q[i]] , 1 , top , a[q[i]].num);
while(m -- )
{
scanf("%d%d%d" , &x , &y , &z);
x ^= last;
f = getlca(x , y);
last = query(root[x] , root[y] , root[f] , root[fa[f]] , 1 , top , z);
printf("%d" , last);
if(m) printf("\n");
}
return 0;
}

【bzoj2588】Spoj 10628. Count on a tree 离散化+主席树的更多相关文章

  1. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  2. BZOJ 2588: Spoj 10628. Count on a tree( LCA + 主席树 )

    Orz..跑得还挺快的#10 自从会树链剖分后LCA就没写过倍增了... 这道题用可持久化线段树..点x的线段树表示ROOT到x的这条路径上的权值线段树 ----------------------- ...

  3. bzoj 2588 Spoj 10628. Count on a tree(主席树)

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...

  4. bzoj 2588: Spoj 10628. Count on a tree【主席树+倍增】

    算是板子,把值离散化,每个点到跟上做主席树,然后查询的时候主席树上用u+v-lca-fa[lca]的值二分 #include<iostream> #include<cstdio> ...

  5. bzoj2588: Spoj 10628. Count on a tree(树上第k大)(主席树)

    每个节点继承父节点的树,则答案为query(root[x]+root[y]-root[lca(x,y)]-root[fa[lca(x,y)]]) #include<iostream> #i ...

  6. BZOJ2588: Spoj 10628. Count on a tree

    传送门 刚开始看错题以为是dfs序瞎搞.. 后来看清题了开始想用树剖瞎搞... 感觉要滚粗啊.. 对于每个点到根的路径建立线段树,暴力建MLE没跑,上主席树,然后$(x,y)$的路径就可以先求出来$L ...

  7. 【主席树】bzoj2588 Spoj 10628. Count on a tree

    每个点的主席树的root是从其父转移来的.询问的时候用U+V-LCA-FA(LCA)即可. #include<cstdio> #include<algorithm> using ...

  8. 主席树初探--BZOJ2588: Spoj 10628. Count on a tree

    n<=100000的点权树,有m<=100000个询问,每次问两个点间的第k小点权,保证有解,强制在线. 主席上树啦!类似于之前的序列不带修改询问的前缀表示法,现在只要把前缀当成某点到根的 ...

  9. 【bzoj2588/P2633】count on a tree —— LCA + 主席树

    (以下是luogu题面) 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问 ...

随机推荐

  1. Java设计模式(2)——创建型模式之工厂方法模式(Factory Method)

    一.概述 上一节[简单工厂模式]介绍了通过工厂创建对象以及简单的利弊分析:这一节来看看工厂方法模式对类的创建 工厂方法模式: 工厂方法与简单工厂的不同,主要体现在简单工厂的缺点的改进: 工厂类不再负责 ...

  2. (转)Html邮件CSS指南

    转载地址:http://www.maildesign.cn/archives/937 分享来自Campaignmonitor非常实用的Html邮件中CSS的支持文档! 他们总结的Html邮件的CSS指 ...

  3. svn 撤销 已提交的修改

    1.保证我们拿到的是最新代码:  svn update  假设最新版本号是28.  2.然后找出要回滚的确切版本号:  svn log [something]  假设根据svn log日志查出要回滚的 ...

  4. python 函数定义顺序

    #!/usr/bin/python # Hello World def order(): print("haha") print('Hello World!') order()

  5. AirtestIDE实践一:梦幻西游手游师门任务自动化

    Airtest Project是网易自研的游戏自动化项目.Airtest IDE是这个项目的一个IDE,就像Eclipse.Pycharm一样,是一个集成开发工具.Airtest框架是一个基于Open ...

  6. python编程os、os.path 模块中关于文件、目录常用的函数使用方法

    os模块中关于文件/目录常用的函数使用方法   函数名 使用方法 getcwd() 返回当前工作目录 chdir(path) 改变工作目录 listdir(path='.') 列举指定目录中的文件名( ...

  7. java实现遍历一个字符串的每一个字母(总结)

    基础:牢记字符串操作的各种方法: ​​​ ​ String s = "aaaljlfeakdsflkjsadjaefdsafhaasdasd"; // 出现次数 int num = ...

  8. 下落的树叶 (The Falling Leaves UVA - 699)

    题目描述: 原题:https://vjudge.net/problem/UVA-699 题目思路: 1.依旧二叉树的DFS 2.建树过程中开个数组统计 //紫书源代码WA AC代码: #include ...

  9. 数据库Mysql的学习(六)-子查询和多表操作

    )*0.05 WHERE card_id ='20121xxxxxx'; //子查询就是一个嵌套先计算子查询 SELECT * FROM borrow WHERE book_id =(SELECT b ...

  10. Memcache的客户端连接系列(一) Java

    声明:本文并非原创,转自华为云帮助中心的分布式缓存服务(Memcached)的用户指南. 关键词: Memcached  客户端 Java Java连接池 Java客户端示例 用户的弹性云服务器已安装 ...