【题解】CF#833 B-The Bakery
一个非常明显的 \(nk\) dp 状态 \(f[i][k]\) 表示以 \(i\) 为第 \(k\) 段的最后一个元素时所能获得的最大代价。转移的时候枚举上一段的最后一个元素 \(j\)更新状态即可。考虑如何优化这个过程?主要的时间消耗在两个部分:一个是确定一段区间的贡献,另一个是找到最大的值。
这两个都是可以使用线段树来维护的,一段区间的贡献我们可以扫描线,而最大值则直接线段树维护最大值。如何滚动反而好像是最难的……想了一会儿,因为显然 memset 不可接受,然而我们可以 \(O(n)\) 建树啊……简直对自己的zz无语惹~
#include <bits/stdc++.h>
using namespace std;
#define maxn 2000000
#define maxm 40000
int n, K, ans, a[maxn], rec[maxn], last[maxn];
int f[maxm][]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct Segament_Tree
{
int mx[maxn], mark[maxn]; void Push_Down(int p)
{
mark[p << ] += mark[p], mark[p << | ] += mark[p];
mx[p << ] += mark[p], mx[p << | ] += mark[p];
mark[p] = ;
} void Build(int p, int l, int r, int K)
{
if(l == r) { mark[p] = , mx[p] = f[l - ][K]; return; }
int mid = (l + r) >> ;
mark[p] = ;
Build(p << , l, mid, K), Build(p << | , mid + , r, K);
mx[p] = max(mx[p << ], mx[p << | ]);
} void Update(int p, int l, int r, int L, int R, int x)
{
if(L <= l && R >= r) { mx[p] += x, mark[p] += x; return; }
if(L > r || R < l) return;
int mid = (l + r) >> ;
Push_Down(p);
Update(p << , l, mid, L, R, x);
Update(p << | , mid + , r, L, R, x);
mx[p] = max(mx[p << ], mx[p << | ]);
} int Query(int p, int l, int r, int L, int R)
{
if(L <= l && R >= r) { return mx[p]; }
if(L > r || R < l) return ;
int mid = (l + r) >> ;
Push_Down(p);
return max(Query(p << , l, mid, L, R), Query(p << | , mid + , r, L, R));
}
}T[]; int main()
{
n = read(), K = read();
for(int i = ; i <= n; i ++)
{
a[i] = read();
last[i] = rec[a[i]], rec[a[i]] = i;
}
int now = , pre = ;
for(int j = ; j <= K; j ++)
{
for(int i = ; i <= n; i ++)
{
T[pre].Update(, , n, last[i] + , i, );
f[i][j] = T[pre].Query(, , n, , i);
}
T[now].Build(, , n, j);
swap(now, pre);
}
printf("%d\n", f[n][K]);
return ;
}
【题解】CF#833 B-The Bakery的更多相关文章
- CF 833 B. The Bakery
B. The Bakery http://codeforces.com/contest/833/problem/B 题意: 将一个长度为n的序列分成k份,每份的cost为不同的数的个数,求最大cost ...
- 竞赛题解 - CF Round #524 Div.2
CF Round #524 Div.2 - 竞赛题解 不容易CF有一场下午的比赛,开心的和一个神犇一起报了名 被虐爆--前两题水过去,第三题卡了好久,第四题毫无头绪QwQ Codeforces 传送门 ...
- 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T5(思维)
还是dfs? 好像自己写的有锅 过不去 看了题解修改了才过qwq #include <cstdio> #include <algorithm> #include <cst ...
- 竞赛题解 - [CF 1080D]Olya and magical square
Olya and magical square - 竞赛题解 借鉴了一下神犇tly的博客QwQ(还是打一下广告) 终于弄懂了 Codeforces 传送门 『题目』(直接上翻译了) 给一个边长为 \( ...
- [题解] [CF 1250J] The Parade
题面 题目大意: 给定一个 \(n\) , 所有军人的数量均在 \([1, n]\) 给定 \(a_i\) 代表高度为 \(i\) 的军人的个数 你要将这些军人分成 \(k\) 行, 满足下面两个条件 ...
- 题解 CF 1372 B
题目 传送门 题意 给出 \(n\),输出 \(a\) ,\(b\) (\(0 < a \leq b < n\)),使\(a+b=n\)且 \(\operatorname{lcm}(a,b ...
- 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T4(模拟)
随便模拟下就过了qwq 然后忘了特判WA了QwQ #include <cstdio> #include <algorithm> #include <cstring> ...
- 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T3(贪心)
是一道水题 虽然看起来像是DP,但其实是贪心 扫一遍就A了 QwQ #include <cstdio> #include <algorithm> #include <cs ...
- 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T2(模拟)
题目要求很简单,做法很粗暴 直接扫一遍即可 注意结果会爆int #include <cstdio> #include <algorithm> #include <cstr ...
随机推荐
- 【转载】四元数-Quaterion
原文:四元数-Quaterion 四元数(Quaterion) 罗朝辉 (http://www.cnblogs.com/kesalin/) 本文遵循“署名-非商业用途-保持一致”创作公用协议 ...
- div仿textarea可输入
原本要用textarea,但是后来发现好像只有IE支持textarea里边使用html标签,由于需要在textarea中显示一条横线(<hr />),在网上查了很久,都说textarea是 ...
- 9、Java ConcurrentModificationException异常原因和解决方法
Java ConcurrentModificationException异常原因和解决方法 在前面一篇文章中提到,对Vector.ArrayList在迭代的时候如果同时对其进行修改就会抛出java.u ...
- zedboard学习第一篇
1. 刚开始学习使用,不知道从哪里开始,手上的资料也很乱,至于这个板子需要学什么也不清楚. 2. 第一个工程就从helloworld开始吧,Zed板上的Zynq是一个PS(processing sys ...
- nodejs 实现套接字服务
nodejs实现套接字服务 一 什么是套接字 1.套接字允许一个进程他通过一个IP地址和端口与另一个进程通信,当你实现对运行在同一台服务器上的两个不同进程的进程间通信或访问一个完全不同的服务器 ...
- 【白书训练指南】(UVa10755)Garbage Heap
先po代码,之后把我那几个不太明了的知识点讲讲,巩固以下.三维的扫描线算法想要掌握还真是有一定的难度的. 代码 #include <iostream> #include <cstri ...
- hdu5305 Friends(dfs,多校题)
Friends Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- Python文件操作大全
Python 编程文件操作大全 文件打开模式 打开模式 执行操作 'r' 以只读方式打开文件(默认) 'w' 以写入的方式打开文件,会覆盖已存在的文件 'x' 如果文件已经存在,使用此模式打开将引 ...
- 如何搭建本地svn服务器和搭建本地Git服务器
搭建git本地服务器使用的软件有很多,例如:gitlab,gitblit,gitbucket,gogs,gitolite,具体比较:http://softlab.sdut.edu.cn/blog/su ...
- 给eclipse安装color-theme插件
给eclipse安装color-theme插件 2016年03月22日 19:16:01 ming_love 阅读数:5193 标签: Eclipse Color Theme 更多 个人分类: jav ...