题目

给定\(n\ (n\le 2000)\)个坐标,求四个坐标使得围起来的四边形面积最大。

分析

最暴力的想法是枚举四个点,然而肯定超时。接着不知道怎么想到中途相遇,然而一点关系都没有。这里用到了一个单调性:

如果在凸包上确定了一个点\(x\),令\(x\)逆时针方向的第一个点为\(y\),这时确定了一个点\(z\)使得\(S_{\triangle XYZ}最大,那么当\)y\(逆时针移动的时候,使得三角形面积最大的点\)z\(就会不动或逆时针移动。这个性质发展成为我们说的旋转卡壳。
这就是说,如果在凸包上确定了一个点,那么我们可以\)O(n)\(求出包含这个点的所有凸包上的四边形的最大面积。
所以我们可以枚举所有点,在\)O(n^2)$中求出答案。

代码

这里有几个地方需要注意到。

  1. 求凸包极角排序的时候,选择的基础点一定是最下面,最左边的,而不可以仅仅是最下面的,否则会出现\(0\)和\(-0\)这种情况。
  2. 在求凸包单调栈弹出的时候,要用小于等于号,否则如果有重点的情况就会出现问题。
  3. 在计算答案时,每次移动\(j\)的时候要记得更新\(s1\)和\(s2\)。
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=2e3+10;
struct node {
double x,y;
} a[maxn],sta[maxn];
int top=0;
double P(double x) {
return x*x;
}
double dis(node a,node b) {
return sqrt(P(a.x-b.x)+P(a.y-b.y));
}
double cross(node a,node b,node c) {
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
bool cmp(node e,node f) {
double tmp=cross(a[1],e,f);
if (tmp>0) return true;
if (tmp<0) return false;
return dis(a[1],e)<dis(a[1],f);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
freopen("my.out","w",stdout);
#endif
int n;
scanf("%d",&n);
for (int i=1;i<=n;++i) {
scanf("%lf%lf",&a[i].x,&a[i].y);
if (a[i].y<a[1].y || (a[i].y==a[1].y && a[i].x<a[1].x)) swap(a[1],a[i]); // here
}
sort(a+2,a+n+1,cmp);
sta[top=1]=a[1];
for (int i=2;i<=n;++i) {
while (top>1 && cross(sta[top-1],sta[top],a[i])<=0) --top; // here
sta[++top]=a[i];
}
if (top<=4) {
double ans=0;
if (top>2) ans=cross(sta[1],sta[2],sta[3]);
if (top==4) ans+=cross(sta[1],sta[3],sta[4]);
ans/=2;
printf("%.3lf\n",ans);
return 0;
}
double ans=0;
for (int i=1;i<=top-2;++i) {
int j=(i+1)%top+1,k=i%top+1,l,id=j%top+1;
double s1=cross(sta[i],sta[k],sta[j])/2;
double s2=0;
for (l=id;l!=i;l=l%top+1) {
double tmp=cross(sta[i],sta[j],sta[l])/2;
if (tmp>s2) s2=tmp,id=l;
}
l=id;
ans=max(ans,s1+s2);
for (j=j%top+1;j%top+1!=i;j=j%top+1) {
s1=cross(sta[i],sta[k],sta[j])/2; // here
s2=cross(sta[i],sta[j],sta[l])/2; // here
if (l==j) l=l%top+1,s2=cross(sta[i],sta[j],sta[l])/2;
while (k%top+1!=j && cross(sta[i],sta[k%top+1],sta[j])/2>s1) k=k%top+1,s1=cross(sta[i],sta[k],sta[j])/2;
while (l%top+1!=i && cross(sta[i],sta[j],sta[l%top+1])/2>s2) l=l%top+1,s2=cross(sta[i],sta[j],sta[l])/2;
ans=max(ans,s1+s2);
}
}
printf("%.3lf\n",ans);
}

bzoj1069-最大土地面积的更多相关文章

  1. 【BZOJ-1069】最大土地面积 计算几何 + 凸包 + 旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2707  Solved: 1053[Submit][Sta ...

  2. bzoj1069 SCOI2007 最大土地面积

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2560  Solved: 983 Description ...

  3. bzoj1069 [SCOI2007]最大土地面积 旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3767  Solved: 1501[Submit][Sta ...

  4. BZOJ1069 SCOI2007最大土地面积(凸包+旋转卡壳)

    求出凸包,显然四个点在凸包上.考虑枚举某点,再移动另一点作为对角线,容易发现剩下两点的最优位置是单调的.过程类似旋转卡壳. #include<iostream> #include<c ...

  5. BZOJ1069 [SCOI2007]最大土地面积 【凸包 + 旋转卡壳】

    题目链接 BZOJ1069 题解 首先四个点一定在凸包上 我们枚举对角线,剩下两个点分别是两侧最远的点 可以三分,复杂度\(O(n^2logn)\) 可以借鉴旋转卡壳的思想,那两个点随着对角线的一定单 ...

  6. [BZOJ1069][SCOI2007]最大土地面积(水平扫描法求凸包+旋转卡壳)

    题意:在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成. 的多边形面积最大.n<=2000. 先求凸包,再枚举对角线,随着对角线的斜率上升,另外两 ...

  7. [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3669  Solved: 1451[Submit][Sta ...

  8. [Bzoj1069][Scoi2007]最大土地面积(凸包)(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3629  Solved: 1432[Submit][Sta ...

  9. BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳

    传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...

  10. 【bzoj1069】最大土地面积

    Description 在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. Input 第1行一个正整数N,接下来N行,每行2个数x,y ...

随机推荐

  1. Java基础——网络编程

    一.网络编程概述 概述: Java是 Internet 上的语言,它从语言级上提供了对网络应用程序的支持,程序员能够很容易开发常见的网络应用程序. Java提供的网络类库,可以实现无痛的网络连接,联网 ...

  2. 【LG1975】[国家集训队]排队

    [LG1975][国家集训队]排队 题面 洛谷 题解 又是一个偏序问题 显然\(CDQ\) 交换操作不好弄怎么办? 可以看成两次删除两次插入 排序问题要注意一下 代码 #include <ios ...

  3. 通过反编译看Java String及intern内幕--费元星站长

    通过反编译看Java String及intern内幕   一.字符串问题 字符串在我们平时的编码工作中其实用的非常多,并且用起来也比较简单,所以很少有人对其做特别深入的研究.倒是面试或者笔试的时候,往 ...

  4. C#中创建二维数组,使用[][]和[,]的区别

    C#中,我们在创建二维数组的时候,一般使用arr[][]的形式,例如 int[][] aInt = new int[2][]; 但声明二维数组还有一种方法,是使用arr[,]的形式.两者有什么区别呢? ...

  5. 「日常训练」Battle Over Cities - Hard Version(PAT-TOP-1001)

    题意与分析 题意真的很简单,实在不想讲了,简单说下做法吧. 枚举删除每个点,然后求最小生成树,如果这个路已经存在那么边权就是0,否则按照原来的处理,之后求花费,然后判整个图是否联通(并查集有几个roo ...

  6. Qt-QSplashScreen-程序启动动画

    多数大型应用程序启动时可会在程序完全启动前显示一个启动画面,在程序完全启动后消失,程序启动画面可以显示相关产品的一些信息,使用户在等待程序启动时同时了解产品的相关功能,这也是一种宣传方式. 首先运行界 ...

  7. 牛客练习赛26:D-xor序列(线性基)

    链接:牛客练习赛26:D-xor序列(线性基) 题意:小a有n个数,他提出了一个很有意思的问题:他想知道对于任意的x, y,能否将x与这n个数中的任意多个数异或任意多次后变为y 题解:线性基 #inc ...

  8. 对Java对象的认识与理解

    今天是我学习编程以来第一次写博客,记下平日学习所得,本来这几日都在学习web框架 但觉得梳理一下之前所学很有必要.毕竟之前学习Java感觉很粗略只是以考试为目的.所以就以<Thinking in ...

  9. 最短路径算法(II)

    什么??你问我为什么不在一篇文章写完所有方法?? Hmm…其实我是想的,但是博皮的加载速度再带上文章超长图片超多的话… 可能这辈子都打不开了吧… 上接https://www.cnblogs.com/U ...

  10. spring boot 中文乱码问题

    在刚接触spring boot 2.0的时候,遇到了一些中文乱码的问题,网上找了一些解决方法. 这里自己做个汇总. 在application.properties文件中添加: spring.http. ...