题目

给定\(n\ (n\le 2000)\)个坐标,求四个坐标使得围起来的四边形面积最大。

分析

最暴力的想法是枚举四个点,然而肯定超时。接着不知道怎么想到中途相遇,然而一点关系都没有。这里用到了一个单调性:

如果在凸包上确定了一个点\(x\),令\(x\)逆时针方向的第一个点为\(y\),这时确定了一个点\(z\)使得\(S_{\triangle XYZ}最大,那么当\)y\(逆时针移动的时候,使得三角形面积最大的点\)z\(就会不动或逆时针移动。这个性质发展成为我们说的旋转卡壳。
这就是说,如果在凸包上确定了一个点,那么我们可以\)O(n)\(求出包含这个点的所有凸包上的四边形的最大面积。
所以我们可以枚举所有点,在\)O(n^2)$中求出答案。

代码

这里有几个地方需要注意到。

  1. 求凸包极角排序的时候,选择的基础点一定是最下面,最左边的,而不可以仅仅是最下面的,否则会出现\(0\)和\(-0\)这种情况。
  2. 在求凸包单调栈弹出的时候,要用小于等于号,否则如果有重点的情况就会出现问题。
  3. 在计算答案时,每次移动\(j\)的时候要记得更新\(s1\)和\(s2\)。
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=2e3+10;
struct node {
double x,y;
} a[maxn],sta[maxn];
int top=0;
double P(double x) {
return x*x;
}
double dis(node a,node b) {
return sqrt(P(a.x-b.x)+P(a.y-b.y));
}
double cross(node a,node b,node c) {
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
bool cmp(node e,node f) {
double tmp=cross(a[1],e,f);
if (tmp>0) return true;
if (tmp<0) return false;
return dis(a[1],e)<dis(a[1],f);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
freopen("my.out","w",stdout);
#endif
int n;
scanf("%d",&n);
for (int i=1;i<=n;++i) {
scanf("%lf%lf",&a[i].x,&a[i].y);
if (a[i].y<a[1].y || (a[i].y==a[1].y && a[i].x<a[1].x)) swap(a[1],a[i]); // here
}
sort(a+2,a+n+1,cmp);
sta[top=1]=a[1];
for (int i=2;i<=n;++i) {
while (top>1 && cross(sta[top-1],sta[top],a[i])<=0) --top; // here
sta[++top]=a[i];
}
if (top<=4) {
double ans=0;
if (top>2) ans=cross(sta[1],sta[2],sta[3]);
if (top==4) ans+=cross(sta[1],sta[3],sta[4]);
ans/=2;
printf("%.3lf\n",ans);
return 0;
}
double ans=0;
for (int i=1;i<=top-2;++i) {
int j=(i+1)%top+1,k=i%top+1,l,id=j%top+1;
double s1=cross(sta[i],sta[k],sta[j])/2;
double s2=0;
for (l=id;l!=i;l=l%top+1) {
double tmp=cross(sta[i],sta[j],sta[l])/2;
if (tmp>s2) s2=tmp,id=l;
}
l=id;
ans=max(ans,s1+s2);
for (j=j%top+1;j%top+1!=i;j=j%top+1) {
s1=cross(sta[i],sta[k],sta[j])/2; // here
s2=cross(sta[i],sta[j],sta[l])/2; // here
if (l==j) l=l%top+1,s2=cross(sta[i],sta[j],sta[l])/2;
while (k%top+1!=j && cross(sta[i],sta[k%top+1],sta[j])/2>s1) k=k%top+1,s1=cross(sta[i],sta[k],sta[j])/2;
while (l%top+1!=i && cross(sta[i],sta[j],sta[l%top+1])/2>s2) l=l%top+1,s2=cross(sta[i],sta[j],sta[l])/2;
ans=max(ans,s1+s2);
}
}
printf("%.3lf\n",ans);
}

bzoj1069-最大土地面积的更多相关文章

  1. 【BZOJ-1069】最大土地面积 计算几何 + 凸包 + 旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2707  Solved: 1053[Submit][Sta ...

  2. bzoj1069 SCOI2007 最大土地面积

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2560  Solved: 983 Description ...

  3. bzoj1069 [SCOI2007]最大土地面积 旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3767  Solved: 1501[Submit][Sta ...

  4. BZOJ1069 SCOI2007最大土地面积(凸包+旋转卡壳)

    求出凸包,显然四个点在凸包上.考虑枚举某点,再移动另一点作为对角线,容易发现剩下两点的最优位置是单调的.过程类似旋转卡壳. #include<iostream> #include<c ...

  5. BZOJ1069 [SCOI2007]最大土地面积 【凸包 + 旋转卡壳】

    题目链接 BZOJ1069 题解 首先四个点一定在凸包上 我们枚举对角线,剩下两个点分别是两侧最远的点 可以三分,复杂度\(O(n^2logn)\) 可以借鉴旋转卡壳的思想,那两个点随着对角线的一定单 ...

  6. [BZOJ1069][SCOI2007]最大土地面积(水平扫描法求凸包+旋转卡壳)

    题意:在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成. 的多边形面积最大.n<=2000. 先求凸包,再枚举对角线,随着对角线的斜率上升,另外两 ...

  7. [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3669  Solved: 1451[Submit][Sta ...

  8. [Bzoj1069][Scoi2007]最大土地面积(凸包)(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3629  Solved: 1432[Submit][Sta ...

  9. BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳

    传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...

  10. 【bzoj1069】最大土地面积

    Description 在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. Input 第1行一个正整数N,接下来N行,每行2个数x,y ...

随机推荐

  1. 苏州Uber优步司机奖励政策(8月31日至9月6日)

    当周最新司机奖励(8月31日至9月6日) 滴滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http: ...

  2. <进阶版>Markdown指南

    有道云笔记内置Markdown编辑器和使用指南. “进阶版”有道云笔记Markdown指南,教你如何进一步掌握待办.清单.流程图和甘特图. 0 待办和清单 待办事项和清单在日常工作.生活中经常被使用. ...

  3. C#学习第一阶段——语法基础

    C#是一门面向对象的编程语言.在面向对象的程序设计方法中,程序由各种相互交互的对象组成.相同种类的对象具有相同的属性,或者说是在相同的class 中的.       例如,以矩形为例,它具有高(len ...

  4. XSS--编码绕过,qcms,鲶鱼cms

    一.编码绕过 1)HTML进制编码 标签中的某些属性值可以使用html十进制.十六进制表示 2)JavaScript编码 JavaScript支持unicode.八进制.十六进制.十进制等 3)URL ...

  5. CentOS安装JMeter

    mkdir /usr/local/jmeter 新建jmeter目录 cd /usr/local/jmeter 进入jmeter目录 wget https://archive.apache.org/d ...

  6. NGUI组件整理总结

    一图流: 注意: private void RClickUI(Vector3 newPos) { this.gameObject.SetActive(true); this.transform.loc ...

  7. leetcode-生成括号(回溯算法)

     转载出处:https://blog.csdn.net/yanerhao/article/details/68561290 生成括号     给出 n 代表生成括号的对数,请你写出一个函数,使其能够生 ...

  8. leetcode-位1的个数(位与运算)

    位1的个数 编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量). 示例 : 输入: 11 输出: 3 解释: 整数 11 的二进制表示为 00000 ...

  9. [C++]STL中的容器

    C++11 STL中的容器 一.顺序容器: vector:可变大小数组: deque:双端队列: list:双向链表: forward_list:单向链表: array:固定大小数组: string: ...

  10. JAVA基础学习之路(六)数组与方法参数的传递

    通常,向方法中传递的都是基本数据类型,而向方法中传递数组时,就需要考虑内存的分配 public class test2 { public static void main(String args[]) ...