http://www.lydsy.com/JudgeOnline/problem.php?id=2005

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20

————————————————————————

参考了http://blog.csdn.net/Clove_unique/article/details/51089272

如果你做过POJ3090的话,应该能够想到,对于一个点(x,y),则其到原点之间就经过了gcd(x,y)-1个点。

证明很显然:设t=gcd(x,y),x=at,y=bt,显然经过(a,b)(2a,2b)……(x,y),不算最后一个点,一共经过了t-1个点。

带入我们的公式得到我们所要求的结果:2*(∑∑gcd(x,y))-m*n

也就是变成了求∑∑gcd(x,y)的题。

莫比乌斯反演一下得到∑∑∑phi(d)(d|gcd(x,y))

又因为d|gcd(x,y)导出d|a&&d|b,可以有:

∑n/d*m/d*phi(d)

好的我们又做完了。

#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
ll phi[N],su[N],sum[N];
bool he[N];
void Euler(int n){
int tot=;
phi[]=;
for(int i=;i<=n;i++){
if(!he[i]){
su[++tot]=i;
phi[i]=i-;
}
for(int j=;j<=tot;j++){
if(i*su[j]>=n)break;
he[i*su[j]]=;
if(i%su[j]==){
phi[i*su[j]]=phi[i]*su[j];break;
}
else phi[i*su[j]]=phi[i]*(su[j]-);
}
}
for(int i=;i<=n;i++)phi[i]+=phi[i-];
return;
}
int main(){
ll n,m,ans=;
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
Euler(n+);
for(ll i=,j;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
ans+=(ll)(phi[j]-phi[i-])*(n/i)*(m/i);
}
printf("%lld\n",*ans-n*m);
return ;
}

BZOJ2005:[Noi2010]能量采集——题解的更多相关文章

  1. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  2. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  3. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  4. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  5. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  6. BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 4727  Solved: 2877[Submit][Status][Discuss] Descript ...

  7. BZOJ2005: [Noi2010]能量采集(欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  8. 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集

    Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...

  9. [luogu1447][bzoj2005][NOI2010]能量采集

    题目大意 求出\(\sum_{i=1}^{n} \sum_{i=1}^{m} gcd(i,j)\times 2 -1\). 题解 解法还是非常的巧妙的,我们考虑容斥原理.我们定义\(f[i]\)表示\ ...

随机推荐

  1. Linux 7.4配置VSFTP服务器

    vsftpd(very secure ftp daemon,非常安全的FTP守护进程)是一款运行在Linux操作系统上的FTP服务程序,不仅完全开源而且免费,此外,还具有很高的安全性.传输速度,以及支 ...

  2. 会声会影X10x9x8最新教程

    会声会影X10x9x8最新最全教程,全部都是干货,包含素材的,下载地址:百度网盘, https://pan.baidu.com/s/1AyVS-C_VcTEz_ir70u08xQ 以下为部分内容截图: ...

  3. .net web api应用遇到的一些问题

    1.调用webapi接口时,碰到一种情况: 通过webapi调用接口时,返回的json数据,死活转换不成对象,转换的对象一直为null: webapi端代码: [HttpGet] public str ...

  4. 第一阶段·Linux运维基础-第2章·Linux系统目录结构介绍

    01 变量与PS1 02 添加用户 03 关闭SELinux 04 关闭iptables 05 显示中文乱码排查过程 06 总结 07 目录结构课程内容 08 Linux目录结构特点 09 Linux ...

  5. TW实习日记:第14天

    今天可以说是又忙又不忙了,忙是因为要赶bug,似乎总有种隐形的力量催着你交工,但实际上太多涉及后端接口的问题,所以又要等别人修改接口才能改bug,可以说真是十分蛋疼了. 改bug的最大心得就是:写好注 ...

  6. 浙江天搜科技落棋人工智能,加速AI产业布局

    8月31日,2018年IFA大展在德国柏林正式开幕.IFA是全球三大消费电子展之一,在世界范围内久负盛名,被誉为“未来科技风向标”.在这个万众瞩目的展会上,号称“给智能世界铺上云的跑道,装上智能发动机 ...

  7. LeetCode 120——三角形最小路径和

    1. 题目 2. 解答 详细解答方案可参考北京大学 MOOC 程序设计与算法(二)算法基础之动态规划部分. 从三角形倒数第二行开始,某一位置只能从左下方或者右下方移动而来,因此,我们只需要求出这两者的 ...

  8. 聊聊、dubbo 找不到 dubbo.xsd 报错

    平常在用 Dubbo 的时候,创建 xml 会提示 http://code.alibabatech.com/schema/dubbo/dubbo.xsd 找不到. 大家可以去 https://gith ...

  9. day-14 回归中的相关系数和决定系数概念及Python实现

    衡量一个回归模型常用的两个参数:皮尔逊相关系数和R平方 一.皮尔逊相关系数 在统计学中,皮尔逊相关系数( Pearson correlation coefficient),又称皮尔逊积矩相关系数(Pe ...

  10. chameleon-Mini(迷你变色龙)

    Chameleon Mini(迷你变色龙)是一个比一般信用卡稍大的小型开发板,是开源产品. 如图 Chameleon Mini可以完全复制许多商业非接触式智能卡包括UID卡,在内的全部内容,因此可以用 ...