BZOJ2005:[Noi2010]能量采集——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2005
Description
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Sample Input
5 4
【样例输入2】
3 4
Sample Output
【样例输出1】
36
【样例输出2】
20
————————————————————————
参考了http://blog.csdn.net/Clove_unique/article/details/51089272
如果你做过POJ3090的话,应该能够想到,对于一个点(x,y),则其到原点之间就经过了gcd(x,y)-1个点。
证明很显然:设t=gcd(x,y),x=at,y=bt,显然经过(a,b)(2a,2b)……(x,y),不算最后一个点,一共经过了t-1个点。
带入我们的公式得到我们所要求的结果:2*(∑∑gcd(x,y))-m*n
也就是变成了求∑∑gcd(x,y)的题。
莫比乌斯反演一下得到∑∑∑phi(d)(d|gcd(x,y))
又因为d|gcd(x,y)导出d|a&&d|b,可以有:
∑n/d*m/d*phi(d)
好的我们又做完了。
#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
ll phi[N],su[N],sum[N];
bool he[N];
void Euler(int n){
int tot=;
phi[]=;
for(int i=;i<=n;i++){
if(!he[i]){
su[++tot]=i;
phi[i]=i-;
}
for(int j=;j<=tot;j++){
if(i*su[j]>=n)break;
he[i*su[j]]=;
if(i%su[j]==){
phi[i*su[j]]=phi[i]*su[j];break;
}
else phi[i*su[j]]=phi[i]*(su[j]-);
}
}
for(int i=;i<=n;i++)phi[i]+=phi[i-];
return;
}
int main(){
ll n,m,ans=;
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
Euler(n+);
for(ll i=,j;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
ans+=(ll)(phi[j]-phi[i-])*(n/i)*(m/i);
}
printf("%lld\n",*ans-n*m);
return ;
}
BZOJ2005:[Noi2010]能量采集——题解的更多相关文章
- BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】
BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- [BZOJ2005][Noi2010]能量采集 容斥+数论
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4394 Solved: 2624[Submit][Statu ...
- [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 4727 Solved: 2877[Submit][Status][Discuss] Descript ...
- BZOJ2005: [Noi2010]能量采集(欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...
- 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集
Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...
- [luogu1447][bzoj2005][NOI2010]能量采集
题目大意 求出\(\sum_{i=1}^{n} \sum_{i=1}^{m} gcd(i,j)\times 2 -1\). 题解 解法还是非常的巧妙的,我们考虑容斥原理.我们定义\(f[i]\)表示\ ...
随机推荐
- 【JUC源码解析】AQS
简介 AQS,也即AbstractQueuedSynchronizer,抽象队列同步器,提供了一个框架,可以依赖它实现阻塞锁和相关同步器.有两种类型,独占式(Exclusive)和共享式(Share) ...
- hive和关系型数据库
1)hive和关系型数据库存储文件的系统不同. hive使用hdfs(hadoop的分布式文件系统),关系型数据库则是服务器本地的文件系统: 2)hive使用的计算模型是mapreduce,而关系型 ...
- Mac环境下RabbitMq安装与测试教程
RabbitMq安装与测试教程 Installing on Mac I. 安装 123456789 brew install rabbitmq ## 进入安装目录cd /usr/local/Cella ...
- php单例模式和工厂模式
单例模式:防止重复实例化,避免大量的new操作,减少消耗系统和内存的资源,使得有且仅有一个实例对象 header("Content-type: text/html; charset=utf- ...
- Katalon 学习笔记(一)
工具介绍: Katalon Studio是一个能提供一整套功能来实现Web,API和Mobile的全自动测试解决方案的自动化测试平台.Katalon Studio构建于开源Selenium和App ...
- Java开发工程师(Web方向) - 04.Spring框架 - 第3章.AOP技术
第3章--AOP技术 Spring框架 - AOP概述 笔记https://my.oschina.net/hava/blog/758873Spring框架 - AOP使用 笔记https://my.o ...
- "Generative Adversarial Nets" Notes
- Ian J.Goodfellow 中文翻译:https://blog.csdn.net/wspba/article/details/54577236 代码实现:https://github.com ...
- 使用 Gradle 配置java项目
注意点 除非调试,不要print ,否则任务不会按照依赖的顺序执行,因为我们自己喜欢调试用print,但是会打乱执行顺序. 排除测试文件: sourceSets.main.java { srcDir ...
- 11.22Daily Scrum
人员 任务分配完成情况 明天任务分配 王皓南 实现网页上视频浏览的功能.研究相关的代码和功能.979 数据库测试 申开亮 实现网页上视频浏览的功能.研究相关的代码和功能.978 实现视频浏览的功能 王 ...
- java利用POI实现读取Word并获取指定样式的文本
import org.apache.poi.hwpf.HWPFDocument; import org.apache.poi.hwpf.model.StyleDescription; import o ...