【BZOJ】2200: [Usaco2011 Jan]道路和航线
【题意】给定n个点的图,正权无向边,正负权有向边,保证对有向边(u,v),v无法到达u,求起点出发到达所有点的最短距离。
【算法】拓扑排序+dijkstra
【题解】因为有负权边,直接对原图进行spfa,加slf优化后可过,但是这道题就没意思了。
理论上,最短路问题用spfa是不能保证复杂度的,但dijkstra的问题是不能处理负权边。
因为题目保证不能返回,实际上有向边将全图分成了几个部分。如果把仅由无向边连接的连通块看成点,则原图变成DAG。
对连通块内部进行dijkstra,在DAG上用拓扑序递推计算就可以保证O(n log n)出解。
具体实现:全图共用最短距离数组d[]。
对跨越连通块的有向边建新图,先用部分拓扑序删掉不从s出发的点。
开连通块个数的堆。
然后拓扑排序的过程中将到达别的连通块的点加入对应的堆,dijkstra时直接开始不用设置初始状态。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
#include<queue>
using namespace std;
const int maxn=,inf=0x3f3f3f3f;
int first[maxn],FIRST[maxn],d[maxn],col[maxn],in[maxn],A[maxn],B[maxn];
int tot,cnt,n,m,N,M,s,color;
struct edge{int v,w,from;}e[maxn*],E[maxn*];
struct cyc{
int x,d;
bool operator < (const cyc &a)const{
return d>a.d;//
}
};
priority_queue<cyc>q[maxn];
int read(){
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
void insert(int u,int v,int w){tot++;e[tot].v=v;e[tot].w=w;e[tot].from=first[u];first[u]=tot;}
void INSERT(int u,int v,int w){cnt++;E[cnt].v=v;E[cnt].w=w;E[cnt].from=FIRST[u];FIRST[u]=cnt;in[v]++;}
void dfs(int x,int color){
col[x]=color;
for(int i=first[x];i;i=e[i].from)if(!col[e[i].v]){
dfs(e[i].v,color);
}
}
queue<int>Q;
void dijkstra(int k){
while(!q[k].empty()){
cyc y=q[k].top();q[k].pop();
if(y.d!=d[y.x])continue;
int x=y.x;
for(int i=first[x];i;i=e[i].from)if(d[e[i].v]>d[x]+e[i].w){
d[e[i].v]=d[x]+e[i].w;
q[k].push((cyc){e[i].v,d[e[i].v]});
}
}
}
int main(){
scanf("%d%d%d%d",&n,&m,&M,&s);
for(int i=;i<=m;i++){
int u=read(),v=read(),w=read();
insert(u,v,w);insert(v,u,w);
}
for(int i=;i<=n;i++)if(!col[i])dfs(i,++N);
for(int i=;i<=M;i++){
int u=read(),v=read(),w=read();
INSERT(col[u],col[v],w);
A[i]=u;B[i]=v;
}
for(int i=;i<=N;i++)if(!in[i]&&col[s]!=i)Q.push(i);
while(!Q.empty()){
int x=Q.front();Q.pop();
for(int i=FIRST[x];i;i=E[i].from){
in[E[i].v]--;
if(!in[E[i].v]&&col[s]!=E[i].v)Q.push(E[i].v);
}
}
Q.push(col[s]);
memset(d,0x3f,sizeof(d));d[s]=;q[col[s]].push((cyc){s,});
while(!Q.empty()){
int x=Q.front();Q.pop();
dijkstra(x);
for(int i=FIRST[x];i;i=E[i].from){
if(d[B[i]]>d[A[i]]+E[i].w){
d[B[i]]=d[A[i]]+E[i].w;
q[E[i].v].push((cyc){B[i],d[B[i]]});
}
in[E[i].v]--;
if(!in[E[i].v])Q.push(E[i].v);
}
}
for(int i=;i<=n;i++)if(d[i]<inf)printf("%d\n",d[i]);else printf("NO PATH\n");
return ;
}
dijkstra使用小根堆!每次加入距离最小的点。最致命的是写成大根堆也可以跑出答案,但是大数据就会很慢。
dijkstra使用小根堆!
dijkstra使用小根堆!
dijkstra使用小根堆!
dijkstra使用小根堆!
dijkstra使用小根堆!
dijkstra使用小根堆!
dijkstra使用小根堆!
dijkstra使用小根堆!
dijkstra使用小根堆!
【BZOJ】2200: [Usaco2011 Jan]道路和航线的更多相关文章
- [BZOJ 2200][Usaco2011 Jan]道路和航线 spfa+SLF优化
Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...
- bzoj 2200: [Usaco2011 Jan]道路和航线——拓扑+dijkstra
Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...
- BZOJ 2200: [Usaco2011 Jan]道路和航线
Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...
- bzoj 2200: [Usaco2011 Jan]道路和航线【spfa】
直接跑最短路就行了--还不用判负环 #include<iostream> #include<cstdio> #include<queue> using namesp ...
- 2200: [Usaco2011 Jan]道路和航线 (拓扑排序+dijstra)
Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...
- [Usaco2011 Jan]道路和航线
Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...
- bzoj2200: [Usaco2011 Jan]道路和航线
先忽略航线,求出图中所有连通块,再用航线拓扑排序求出每个连通块的优先级 然后dijkstra时优先处理优先级高的块里的点就行了 ps:这题SPFA会TLE #include <iostream& ...
- BZOJ 2200--[Usaco2011 Jan]道路和航线(最短路&拓扑排序)
2200: [Usaco2011 Jan]道路和航线 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1128 Solved: 414[Submit] ...
- BZOJ 2199: [Usaco2011 Jan]奶牛议会
2199: [Usaco2011 Jan]奶牛议会 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 375 Solved: 241[Submit][S ...
随机推荐
- ejabberd学习2
1.ejabberd监听多个端口 每个网络连接进来,ejabberd都会使用一个进程来负责这个连接的数据处理.原理跟Joe Armstrong的<Erlang程序设计>中的并行服务器一样, ...
- JSP在页面加载时调用servlet的方法
方法:先在JS里面写一个调用servlet的事件(可以利用ajax),然后利用<body>标签的onload调用这个事件. 代码如下: jsp文件代码如下: <%@ page lan ...
- TCP/IP协议与OSI协议
OSI协议是一个理想化的协议,它把网络传输过程分为七层模型,以达到形象化的理解的效果,在实际应用中没有被使用.TCP/IP协议可以看作是它的简化版,是目前应用最广泛的网络协议,许多协议都是以它为基础而 ...
- 【bzoj2259】[Oibh]新型计算机 堆优化Dijkstra
题目描述 Tim正在摆弄着他设计的“计算机”,他认为这台计算机原理很独特,因此利用它可以解决许多难题. 但是,有一个难题他却解决不了,是这台计算机的输入问题.新型计算机的输入也很独特,假设输入序列中有 ...
- MySQL数据库引擎MyISAM与InnoDB的区别
1. 存储结构 MyISAM:每个MyISAM在磁盘上存储成三个文件.第一个文件的名字以表的名字开始,扩展名指出文件类型..frm文件存储表定义.数据文件的扩展名为.MYD (MYData).索引文件 ...
- WIN7系统插入蓝牙适配器经常断开问题
WIN7 ACER笔记本一台,蓝牙耳机一个,10块钱的蓝牙适配器一个 目的:可以在笔记本上用适配器与蓝牙耳机匹配 出现问题:1.有2个图标,一会左边感叹号,一会右边感叹号,必须有个存在感叹号 解决:第 ...
- POJ3621:Sightseeing Cows——题解
http://poj.org/problem?id=3621 全文翻译参自洛谷:https://www.luogu.org/problemnew/show/P2868 题目大意:一个有向图,每个点都有 ...
- BZOJ3571 & 洛谷3236:[HNOI2014]画框——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3571 https://www.luogu.org/problemnew/show/P3236 小T ...
- Linux之初试驱动20160613
这篇文章主要介绍一下Linux内核下的驱动结构与书写,以及介绍Linux下简单使用驱动的应用程序: 首先我们直接看使用驱动的简单应用程序: #include <sys/types.h> # ...
- HTML5 canvas 创意:飞翔的凤凰
当我看到这件作品的时候,我表示非常喜欢.这个作品的产生不仅仅需要编程和算法,作者肯定是个充满了艺术细胞的人.倘若有什么canvas艺术作品比赛的话,我想它就是获奖的那个. 先观赏下演示吧.注意,要看到 ...