Description

约翰带着奶牛去都市观光。在落日的余晖里,他们看到了一幢接一幢的摩天高楼的轮廓在地平线 上形成美丽的图案。以地平线为 X 轴,每幢高楼的轮廓是一个位于地平线上的矩形,彼此间可能有 重叠的部分。奶牛一共看到了 N 幢高楼,第 i 幢楼的高度是 Hi,两条边界轮廓在地平线上的坐标是 Ai 到 Bi。请帮助奶牛们计算一下,所有摩天高楼的轮廓覆盖的总面积是多少。

Input

第一行一个整数N,然后有N行,每行三个正整数ai、bi、Hi。

Output

一个数,数列中所有元素的和。

刚开始被吓得以为是个二分,发现不会。然后放弃了一段时间。

今天随机跳题跳到这个,发现这不是裸的扫描线问题咩。 。。

我们对于摩天大楼,记录其下边界为\(0\),上边界即为摩天大楼的高度。

然后最左侧坐标即为\(a_i\),最右侧坐标即为\(b_i\)。

然后对于横坐标离散化一下,我们直接跑扫描线即可。

PS:记得开\(long \ long\)还有数组要开大!!

代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#define int long long
#define R register using namespace std; const int gz=100008; inline void in(R int &x)
{
R int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
} struct ode
{
int l,r,h,f;
bool operator <(const ode&a)const
{
return h<a.h;
}
}edge[gz<<1]; struct cod
{
int l,r;
int len,s;
}tr[gz<<2]; int n,x[gz],tot; #define ls o<<1
#define rs o<<1|1 void build(R int o,R int l,R int r)
{
tr[o].l=l,tr[o].r=r;
tr[o].len=tr[o].s=0;
if(l==r)return;
R int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
} inline void up(R int o)
{
if(tr[o].s)
tr[o].len=x[tr[o].r+1]-x[tr[o].l];
else if(tr[o].l==tr[o].r)
tr[o].len=0;
else tr[o].len=tr[ls].len+tr[rs].len;
} void change(R int o,R int l,R int r ,R int k)
{
if(tr[o].l==l and tr[o].r==r)
{
tr[o].s+=k;
up(o);
return;
}
R int mid=(tr[o].l+tr[o].r)>>1;
if(r<=mid)change(ls,l,r,k);
else if(l>mid)change(rs,l,r,k);
else change(ls,l,mid,k),change(rs,mid+1,r,k);
up(o);
} signed main()
{
in(n);
for(R int i=1,a,b,c;i<=n;i++)
{
in(a),in(b),in(c);
edge[++tot].l=a,edge[tot].h=0,edge[tot].r=b;
edge[tot].f=1;x[tot]=a;
edge[++tot].l=a,edge[tot].h=c;edge[tot].r=b;
edge[tot].f=-1;x[tot]=b;
}
sort(x+1,x+tot+1);
sort(edge+1,edge+tot+1);
R int new_n=1;
for(R int i=2;i<=tot;i++)
if(x[new_n]!=x[i])
x[++new_n]=x[i];
build(1,1,new_n);
R int ans=0;
for(R int i=1;i<=tot;i++)
{
R int l=lower_bound(x+1,x+new_n+1,edge[i].l)-x;
R int r=lower_bound(x+1,x+new_n+1,edge[i].r)-x-1;
change(1,l,r,edge[i].f);
ans+=(edge[i+1].h-edge[i].h)*tr[1].len;
}
printf("%lld",ans);
}

线段树+扫描线【bzoj1645】[USACO07OPEN]城市的地平线City Horizon的更多相关文章

  1. bzoj1645 / P2061 [USACO07OPEN]城市的地平线City Horizon(扫描线)

    P2061 [USACO07OPEN]城市的地平线City Horizon 扫描线 扫描线简化版 流程(本题为例): 把一个矩形用两条线段(底端点的坐标,向上长度,添加$or$删除)表示,按横坐标排序 ...

  2. 线段树 扫描线 L - Atlantis HDU - 1542 M - City Horizon POJ - 3277 N - Paint the Wall HDU - 1543

    学习博客推荐——线段树+扫描线(有关扫描线的理解) 我觉得要注意的几点 1 我的模板线段树的叶子节点存的都是 x[L]~x[L+1] 2 如果没有必要这个lazy 标志是可以不下传的 也就省了一个pu ...

  3. 洛谷 P2061 [USACO07OPEN]城市的地平线City Horizon

    简化版的矩形面积并,不用线段树,不用离散化,代码意外的简单 扫描线,这里的基本思路就是把要求的图形竖着切几刀分成许多矩形,求面积并.(切法就是每出现一条与y轴平行的线段都切一刀) 对于每一个切出来的矩 ...

  4. Luogu_2061_[USACO07OPEN]城市的地平线City Horizon

    题目描述 Farmer John has taken his cows on a trip to the city! As the sun sets, the cows gaze at the cit ...

  5. [题目] luogu P2061 [USACO07OPEN]城市的地平线City Horizon

    算法 线段树 + 离散化 思路 对\((x,y,h)\)的左右端点\(x,y\)进行离散化,离散化前的原值记为\(val[i]\),对每个矩形按高度\(h\)从小到大排序. 设离散化后的端点有\(M\ ...

  6. 【Codeforces720D】Slalom 线段树 + 扫描线 (优化DP)

    D. Slalom time limit per test:2 seconds memory limit per test:256 megabytes input:standard input out ...

  7. Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)

    题目链接:http://codeforces.com/contest/522/problem/D 题目大意:  给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...

  8. 【POJ-2482】Stars in your window 线段树 + 扫描线

    Stars in Your Window Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11706   Accepted:  ...

  9. HDU 4419 Colourful Rectangle --离散化+线段树扫描线

    题意: 有三种颜色的矩形n个,不同颜色的矩形重叠会生成不同的颜色,总共有R,G,B,RG,RB,GB,RGB 7种颜色,问7种颜色每种颜色的面积. 解法: 很容易想到线段树扫描线求矩形面积并,但是如何 ...

随机推荐

  1. vijos 1037 背包+标记

    描述 2001年9月11日,一场突发的灾难将纽约世界贸易中心大厦夷为平地,Mr. F曾亲眼目睹了这次灾难.为了纪念“9?11”事件,Mr. F决定自己用水晶来搭建一座双塔. Mr. F有N块水晶,每块 ...

  2. 「模板」 FHQ_Treap

    「模板」 FHQ_Treap 我也是偶然发现我还没发过FHQ_Treap的板子. 那就发一波吧. 这个速度实在不算快,但是不用旋转,并且好写. 更重要的是,Splay 可以做的事情它都可以做!比如区间 ...

  3. 【BZOJ】1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    [算法]动态规划 [题解]DP有个特点(递推的特点),就是记录所有可能状态然后按顺序转移. 最优化问题中DP往往占据重要地位. f[i][j]表示前i头奶牛,第i头改为号码j的最小改动数字,这样每头奶 ...

  4. GXC 钱包部署

    参考: [ 官方 wiki ] 基于 Ubuntu 的 GXC 部署 基础环境 OS: Ubuntu gxc: 官方 [ release 最新版本 ] 下载 release 包(ubuntu) cd ...

  5. 12.24笔记(关于//UIDynamic演练//多对象的附加行为//UIDynamic简单演练//UIDynamic//(CoreText框架)NSAttributedString)

          12.24笔记1.UIDynamic注意点:演示代码:上面中设置视图旋转的时候,需要注意设置M_PI_4时,视图两边保持平衡状态,达不到仿真效果.需要偏移下角度.2.吸附行为3.推动行为初 ...

  6. 使用.net core abp framework

    abp是一个有用的框架,包含许多功能,可以用来作为脚手架. 直接在官方网站上输入相应的工程名称,选择对应的版本就会下载对应的版本..net core 版本的可以使用后端框架部分来做api,包含了常用框 ...

  7. Web Session 浅入浅出(山东数漫江湖)

    使用过几种Web App开发语言和框架,都会接触到Session的概念.即使是一个简单站点访问计数的功能,也常常使用Session来实现的.其他常用的领域还有购物车,登录用户等.但是,对Session ...

  8. CRB and Candies(组合数学+求逆元+lcm)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5407 题目: Problem Description CRB has N different cand ...

  9. Python 源码学习之内存管理 -- (转)

    Python 的内存管理架构(Objects/obmalloc.c): _____ ______ ______ ________ [ int ] [ dict ] [ list ] ... [ str ...

  10. 解决linux下终端无法输入的假死问题

    有时在linux下shell终端中,会突然出现终端应用卡死,无法接受键盘输入, 但是其它分屏, 系统都是正常的.这本来是一个终端的很老的功能, 叫软件流控制(XON/XOFF flow control ...