http://blog.csdn.net/luomingjun12315/article/details/45555495

这一段时间写的题和我接下来要展示的一些概念都来自这里↑。

必胜点和必败点的概念:
       P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
       N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。
 
必胜点和必败点的性质:
        1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)
        2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
        3、无论如何操作,必败点P 都只能进入 必胜点 N。
 
Sprague-Grundy定理(SG定理): 
  游戏和的SG函数等于各个游戏SG函数的Nim和(异或和)。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。
 
SG函数:
        首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
        对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。
 
 
 
我的理解:
试想一个博弈以不能操作为输,后手的保证胜利大多数基于对称方案,也就是说,对于先手的每一步,后手都有对应的步,异或同0异1刚好解决这个问题。
我对mex运算的理解是这是一种分层,各种取数方法博弈的dp停留在必胜必负这一层,如果多个类似的游戏综合起来就会有http://poj.org/problem?id=2425这棵树一样会有一些有很多分支的节点。sg函数的mex操作完成了节点的分层,然后再进行游戏的前后手操作匹配,异或和如果为0则表明后手对先手的每一步都能匹配,此时后手必胜。
 
其实我觉得这个理解并不是很重要,直接套板子也能写,但是我不知道原理就会浑身难受所以。。还是找了资料大概理解了一下原理。

sg函数总结的更多相关文章

  1. HDU 5795 A Simple Nim 打表求SG函数的规律

    A Simple Nim Problem Description   Two players take turns picking candies from n heaps,the player wh ...

  2. 【转】博弈—SG函数

    转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...

  3. HDU 1848 Fibonacci again and again【SG函数】

    对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...

  4. POJ2425 A Chess Game[博弈论 SG函数]

    A Chess Game Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 3917   Accepted: 1596 Desc ...

  5. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

  6. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

  7. sg函数与博弈论2

    参考链接: http://blog.sina.com.cn/s/blog_51cea4040100h3l9.html 这篇主要就是讲anti-sg.multi-sg和every-sg的. 例1 poj ...

  8. sg函数与博弈论

    这个标题是不是看起来很厉害呢... 我们首先来看一个最简单的游戏.比如我现在有一堆石子,有p个,每次可以取走若干个(不能不取),不能取的人就输了. 现在假设有两个人要玩这个游戏,一个人先手,一个人后手 ...

  9. hdu1536&&hdu3023 SG函数模板及其运用

    S-Nim Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status ...

  10. HDU1848 Fibonacci again and again SG函数

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

随机推荐

  1. bzoj 3126: [Usaco2013 Open]Photo——单调队列优化dp

    Description 给你一个n长度的数轴和m个区间,每个区间里有且仅有一个点,问能有多少个点 Input * Line 1: Two integers N and M. * Lines 2..M+ ...

  2. 【LibreOJ】#539. 「LibreOJ NOIP Round #1」旅游路线

    [题意]给定正边权有向图,车油量上限C,每个点可以花费pi加油至min(C,ci),走一条边油-1,T次询问s点出发带钱q,旅行路程至少为d的最多剩余钱数. n<=100,m<=1000, ...

  3. HDU 2059 龟兔赛跑 (dp)

    题目链接 Problem Description 据说在很久很久以前,可怜的兔子经历了人生中最大的打击--赛跑输给乌龟后,心中郁闷,发誓要报仇雪恨,于是躲进了杭州下沙某农业园卧薪尝胆潜心修炼,终于练成 ...

  4. javascript中数据属性与访问器属性

    1.数据属性 Configurable:true|false,表示能否通过delete将属性删除,默认为true.当把属性的Configurable设置为false后,该属性不能通过delete删除, ...

  5. js获取链接参数

    var url = location.search; var Request = new Object(); if(url.indexOf("?")!=-1){ var str = ...

  6. Exploring Qualcomm's TrustZone Implementation

    转自  http://bits-please.blogspot.com/2015/08   (需要FQ, 狗日的墙) In this blog post, we'll be exploring Qua ...

  7. (二十)ubuntu的recovery mode解决用户一些实际问题

    遇到的问题如下: 1.在当前用户下使用sudo来直接修改password等几个文件,一旦修改了passwd,用户名发生了变化,其他的用户组.密码等却没有对应的配置,就再进不了该用户了. 2.忘记用户密 ...

  8. mysql 5.6在gtid复制模式下复制错误,如何跳过??

    mysql 5.6在gtid复制模式下复制错误,如何跳过?? http://www.xuchanggang.cn/archives/918.html

  9. leetcode 343. Integer Break(dp或数学推导)

    Given a positive integer n, break it into the sum of at least two positive integers and maximize the ...

  10. c basic library framework - simplec 2.0.0

    前言 - simplec 单元测试 流程介绍 一个关于C基础库 simplec 2.0.0 发布了. 详细的文档介绍请参照 README.md. 说的再多都无用, 抵不上 gdb 一个 b r n. ...