http://www.lydsy.com/JudgeOnline/problem.php?id=2190

 
裸欧拉函数,先不计算对角线(a,a)的一列,然后算出1到n-1的所有欧拉函数相加*2,再加上对角线能看到的1个即可。
欧拉函数:φ(x)表示xy互质且y<x的y的个数.
筛法求解,
φ(x)是积性函数满足
1.当x与y互质时φ(x*y)=φ(x)*φ(y).
2.x为质数时,φ(x)=x-1;
3.x%y=0时,φ(x*y)=φ(x)*y.
 
代码
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=;
int n;
int cnt[maxn]={};
int su[maxn]={},tot=;
bool vis[maxn]={};
int main(){
scanf("%d",&n);cnt[]=;
for(int i=;i<=n;i++){
if(!vis[i])su[++tot]=i,cnt[i]=i-;
for(int j=;j<=tot;j++){
if(i*su[j]>n)break;
vis[i*su[j]]=;
if(i%su[j]==){cnt[i*su[j]]=cnt[i]*su[j]; break;}
cnt[i*su[j]]=cnt[i]*cnt[su[j]];
}
}int ans=;
for(int i=;i<n;i++){
ans+=cnt[i];
}
printf("%d\n",ans*+);
return ;
}

【bzoj2190】[SDOI2008]仪仗队 数论 欧拉函数 筛法的更多相关文章

  1. 【bzoj2190】: [SDOI2008]仪仗队 数论-欧拉函数

    [bzoj2190]: [SDOI2008]仪仗队 在第i行当且仅当gcd(i,j)=1 可以被看到 欧拉函数求和 没了 /* http://www.cnblogs.com/karl07/ */ #i ...

  2. BZOJ2190 [SDOI2008]仪仗队(欧拉函数)

    与HDU2841大同小异. 设左下角的点为(1,1),如果(1,1)->(x,y)和(1,1)->(x',y')向量平行,那只有在前面的能被看见.然后就是求x-1.y-1不互质的数对个数. ...

  3. BZOJ2190 SDOI2008 仪仗队 gcd,欧拉函数

    题意:求从左下角能看到的元素个数 引理:对点(x,y),连线(0,0)-(x,y),元素个数为gcd(x,y)-1(中间元素) 即要求gcd(x,y)=1 求gcd(x,y)=1的个数 转化为2 \s ...

  4. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  5. [SDOI2008]仪仗队(欧拉函数)

    题目 [SDOI2008]仪仗队 解析 这个题,我也不知道他们的soltion是怎么写的这么长的. 我们发现我们一次看一条直线上的第一个点,也就是说,若两个点斜率\(k=\frac{y}{x}\)相同 ...

  6. P2158 [SDOI2008] 仪仗队(欧拉函数模板)

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  7. bzoj 2190 [SDOI2008]仪仗队(欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2190 [题意] n*n的正方形,在(0,0)格点可以看到的格子数目. [思路] 预处理 ...

  8. luogu P2158 [SDOI2008]仪仗队 (欧拉函数)

    欧拉函数裸题 可惜我太久没做题忘了欧拉函数是什么了... 注意判断一下n = 1的情况就好了 #include <cstdio> using namespace std; ; typede ...

  9. 【BZOJ】2190 [SDOI2008]仪仗队(欧拉函数)

    Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是 ...

随机推荐

  1. Intersecting Lines (计算几何基础+判断两直线的位置关系)

    题目链接:http://poj.org/problem?id=1269 题面: Description We all know that a pair of distinct points on a ...

  2. 将已编写的静态的网页发布到github上

    最近在学习前端框架的过程中,一直想把自己学习中做的demo 发布到github 上去.但是在查看了很多相关资料也没能找到一个比较满意的结果. 无奈之下,只能尝试做用了一种自认为最low 的方式来达到部 ...

  3. 利用certutil.exe 传文件

    certutill.exe 在Windows 7 及其之后的所有Windows Server和Workstation版本均预装 1. Encode file: certutil -encode kk. ...

  4. Phoenix批量修改数据

    很简单的一个东西,查了挺久的,浪费了很多的时间 直接用Upsert Into Select就可以了 例:把tables表中cloumn2列等于bbb的都改成aaa Upsert Into Table  ...

  5. 《Java编程思想》阅读笔记二

    Java编程思想 这是一个通过对<Java编程思想>(Think in java)进行阅读同时对java内容查漏补缺的系列.一些基础的知识不会被罗列出来,这里只会列出一些程序员经常会忽略或 ...

  6. java中this的用法如:this.name=name

    package com.chensi; /** * 这个是为了搞懂那个 this.name = name的. * @author ZHL * */ public class ThisTestZhl { ...

  7. linux命令(15):mount/umount命令

    使用挂盘之前可以先使用fdisk -l查看硬盘分区情况. 命令格式: mount [-t vfstype] [-o options] device dir -t vfstype 指定文件系统的类型.常 ...

  8. Ta-Lib用法介绍 !

    一.函数索引 重叠研究 BBANDS Bollinger Bands DEMA Double Exponential Moving Average EMA Exponential Moving Ave ...

  9. Balanced Binary Tree——经典题

    Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...

  10. Linux 基础——开山篇

    为什么要开始学习Linux命令? 首先当然是因为工作需要了,现在的工作是负责银行调度的系统的源系统接入的工作,经常要到生产部署版本.所以……买了一本<Linux命令行与shell脚本编程大全&g ...