One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.

Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.

Step 1: Calculate a new N*N matrix C = A*B. 
Step 2: Calculate M = C^(N*N). 
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’. 
Step 4: Calculate the sum of all the elements in M’.

Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.

InputThe input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.

The end of input is indicated by N = K = 0.OutputFor each case, output the sum of all the elements in M’ in a line.Sample Input

  1. 4 2
  2. 5 5
  3. 4 4
  4. 5 4
  5. 0 0
  6. 4 2 5 5
  7. 1 3 1 5
  8. 6 3
  9. 1 2 3
  10. 0 3 0
  11. 2 3 4
  12. 4 3 2
  13. 2 5 5
  14. 0 5 0
  15. 3 4 5 1 1 0
  16. 5 3 2 3 3 2
  17. 3 1 5 4 5 2
  18. 0 0

Sample Output

  1. 14
  2. 56

给你一个n*m和一个m*n的矩阵,经过上面的4步之后会得到一个新的矩阵M,求M中所有元素的总和。

n是一个可以到1000的数,但是m巨小,最多到6,矩阵开1000会爆栈,我们可以转化一下:

A*B^(n*n) = A*B*A*B*A*B...*A*B = A*(B*A)^(n*n-1)*B

B*A是一个m*m的矩阵,嘿嘿~~~

  1. //Asimple
  2. #include <iostream>
  3. #include <algorithm>
  4. #include <cstdio>
  5. #include <cstdlib>
  6. #include <queue>
  7. #include <vector>
  8. #include <string>
  9. #include <cstring>
  10. #include <stack>
  11. #include <set>
  12. #include <map>
  13. #include <cmath>
  14. #define swap(a,b,t) t = a, a = b, b = t
  15. #define CLS(a, v) memset(a, v, sizeof(a))
  16. #define test() cout<<"============"<<endl
  17. #define debug(a) cout << #a << " = " << a <<endl
  18. #define dobug(a, b) cout << #a << " = " << a << " " << #b << " = " << b << endl
  19. using namespace std;
  20. typedef long long ll;
  21. const int N = ;
  22. const ll MOD=;
  23. const int INF = ( << );
  24. const double PI=atan(1.0)*;
  25. const int maxn = +;
  26. const ll mod = ;
  27. ll n, m, len, ans, sum, v, w, T, num;
  28. int A[maxn][maxn], B[maxn][maxn];
  29. int c1[maxn][maxn], c2[maxn][maxn];
  30.  
  31. struct Matrix {
  32. long long grid[N][N];
  33. int row,col;
  34. Matrix():row(N),col(N) {
  35. memset(grid, , sizeof grid);
  36. }
  37. Matrix(int row, int col):row(row),col(col) {
  38. memset(grid, , sizeof grid);
  39. }
  40.  
  41. //矩阵乘法
  42. Matrix operator *(const Matrix &b) {
  43. Matrix res(row, b.col);
  44. for(int i = ; i<res.row; i++)
  45. for(int j = ; j<res.col; j++)
  46. for(int k = ;k<col; k++)
  47. res[i][j] = (res[i][j] + grid[i][k] * b.grid[k][j] + MOD) % MOD;
  48. return res;
  49. }
  50.  
  51. //矩阵快速幂
  52. Matrix operator ^(long long exp) {
  53. Matrix res(row, col);
  54. for(int i = ; i < row; i++)
  55. res[i][i] = ;
  56. Matrix temp = *this;
  57. for(; exp > ; exp >>= , temp = temp * temp)
  58. if(exp & ) res = temp * res;
  59. return res;
  60. }
  61.  
  62. long long* operator[](int index) {
  63. return grid[index];
  64. }
  65.  
  66. void print() {
  67. for(int i = ; i <row; i++) {
  68. for(int j = ; j < col-; j++)
  69. printf("%d ",grid[i][j]);
  70. printf("%d\n",grid[i][col-]);
  71. }
  72. }
  73. };
  74.  
  75. void input(){
  76. ios_base::sync_with_stdio(false);
  77. while( cin >> n >> m && (n+m) ) {
  78. for(int i=; i<n; i++)
  79. for(int j=; j<m; j++)
  80. cin >> A[i][j];
  81. for(int i=; i<m; i++)
  82. for(int j=; j<n; j++)
  83. cin >> B[i][j];
  84. Matrix C(m, m);
  85. for(int i=; i<m; i++) {
  86. for(int j=; j<m; j++) {
  87. C[i][j] = ;
  88. for(int k=; k<n; k++) {
  89. C[i][j] += ( B[i][k]*A[k][j]);
  90. C[i][j] %= ;
  91. }
  92. }
  93. }
  94. C = C^(n*n-);
  95.  
  96. for(int i=; i<n; i++) {
  97. for(int j=; j<n; j++) {
  98. c1[i][j] = ;
  99. for(int k=; k<m; k++) {
  100. c1[i][j] += A[i][k]*C[k][j];
  101. c1[i][j] %= ;
  102. }
  103. }
  104. }
  105. for(int i=; i<n; i++) {
  106. for(int j=; j<n; j++) {
  107. c2[i][j] = ;
  108. for(int k=; k<m; k++) {
  109. c2[i][j] += c1[i][k]*B[k][j];
  110. }
  111. }
  112. }
  113.  
  114. ans = ;
  115. for(int i=; i<n; i++) {
  116. for(int j=; j<n; j++) {
  117. ans += (c2[i][j]%MOD);
  118. }
  119. }
  120. cout << ans << endl;
  121. }
  122. }
  123.  
  124. int main(){
  125. input();
  126. return ;
  127. }

Fast Matrix Calculation HDU - 4965的更多相关文章

  1. hdu 4965 Fast Matrix Calculation(矩阵高速幂)

    题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...

  2. HDU 4965 Fast Matrix Calculation(矩阵高速幂)

    HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次.能够变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个 ...

  3. hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律

    http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...

  4. HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂

    题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...

  5. hdu 4965 Fast Matrix Calculation

    题目链接:hdu 4965,题目大意:给你一个 n*k 的矩阵 A 和一个 k*n 的矩阵 B,定义矩阵 C= A*B,然后矩阵 M= C^(n*n),矩阵中一切元素皆 mod 6,最后求出 M 中所 ...

  6. HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...

  7. HDU 4965 Fast Matrix Calculation 矩阵快速幂

    题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...

  8. HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律

    一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...

  9. hdu4965 Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...

随机推荐

  1. Thread类的join()方法

    public class Demo { /** * Thread类的join()方法 * -------------------------------- * 1)join() * 2)join(lo ...

  2. 如何优雅的选择字体(font-family)

    大家都知道,在不同操作系统.不同游览器里面默认显示的字体是不一样的,并且相同字体在不同操作系统里面渲染的效果也不尽相同,那么如何设置字体显示效果会比较好呢?下面我们逐步的分析一下: 一.首先我们看看各 ...

  3. LeetCode - 769. Max Chunks To Make Sorted

    Given an array arr that is a permutation of [0, 1, ..., arr.length - 1], we split the array into som ...

  4. axios 中断请求

    1 <button onclick="test()">click me</button> <script src="https://unpk ...

  5. JQuery限制文本框只能输入数字和小数点的方法

    <input type="text" class="txt NumText"  Width="100px"  /> $(func ...

  6. 二、JavaScript基础(2)

    BOM基础加强 1.浏览器对象BOM DOM Window DOM Navigator DOM Screen DOM History DOM Location 2.浏览器对象的使用 History H ...

  7. Java代码一行一行读取txt的内容

    public static void main(String[] args) { // 文件夹路径 String path = "E:\\eclipse work\\ImageUtil\\s ...

  8. 修复ubuntu引导

    1. 插入ubuntu光盘启动临时ubuntu 2. ctrl alt t 进入命令行 3. 过程如下

  9. WebH

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Net ...

  10. ZOJ 4067 - Books - [贪心][2018 ACM-ICPC Asia Qingdao Regional Problem J]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4067 题意: 给出 $n$ 本书(编号 $1 \sim n$), ...