Fast Matrix Calculation HDU - 4965
Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.
Step 1: Calculate a new N*N matrix C = A*B.
Step 2: Calculate M = C^(N*N).
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.
Step 4: Calculate the sum of all the elements in M’.
Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.
InputThe input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.
The end of input is indicated by N = K = 0.OutputFor each case, output the sum of all the elements in M’ in a line.Sample Input
4 2
5 5
4 4
5 4
0 0
4 2 5 5
1 3 1 5
6 3
1 2 3
0 3 0
2 3 4
4 3 2
2 5 5
0 5 0
3 4 5 1 1 0
5 3 2 3 3 2
3 1 5 4 5 2
0 0
Sample Output
14
56
给你一个n*m和一个m*n的矩阵,经过上面的4步之后会得到一个新的矩阵M,求M中所有元素的总和。
n是一个可以到1000的数,但是m巨小,最多到6,矩阵开1000会爆栈,我们可以转化一下:
A*B^(n*n) = A*B*A*B*A*B...*A*B = A*(B*A)^(n*n-1)*B
B*A是一个m*m的矩阵,嘿嘿~~~
//Asimple
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <string>
#include <cstring>
#include <stack>
#include <set>
#include <map>
#include <cmath>
#define swap(a,b,t) t = a, a = b, b = t
#define CLS(a, v) memset(a, v, sizeof(a))
#define test() cout<<"============"<<endl
#define debug(a) cout << #a << " = " << a <<endl
#define dobug(a, b) cout << #a << " = " << a << " " << #b << " = " << b << endl
using namespace std;
typedef long long ll;
const int N = ;
const ll MOD=;
const int INF = ( << );
const double PI=atan(1.0)*;
const int maxn = +;
const ll mod = ;
ll n, m, len, ans, sum, v, w, T, num;
int A[maxn][maxn], B[maxn][maxn];
int c1[maxn][maxn], c2[maxn][maxn]; struct Matrix {
long long grid[N][N];
int row,col;
Matrix():row(N),col(N) {
memset(grid, , sizeof grid);
}
Matrix(int row, int col):row(row),col(col) {
memset(grid, , sizeof grid);
} //矩阵乘法
Matrix operator *(const Matrix &b) {
Matrix res(row, b.col);
for(int i = ; i<res.row; i++)
for(int j = ; j<res.col; j++)
for(int k = ;k<col; k++)
res[i][j] = (res[i][j] + grid[i][k] * b.grid[k][j] + MOD) % MOD;
return res;
} //矩阵快速幂
Matrix operator ^(long long exp) {
Matrix res(row, col);
for(int i = ; i < row; i++)
res[i][i] = ;
Matrix temp = *this;
for(; exp > ; exp >>= , temp = temp * temp)
if(exp & ) res = temp * res;
return res;
} long long* operator[](int index) {
return grid[index];
} void print() {
for(int i = ; i <row; i++) {
for(int j = ; j < col-; j++)
printf("%d ",grid[i][j]);
printf("%d\n",grid[i][col-]);
}
}
}; void input(){
ios_base::sync_with_stdio(false);
while( cin >> n >> m && (n+m) ) {
for(int i=; i<n; i++)
for(int j=; j<m; j++)
cin >> A[i][j];
for(int i=; i<m; i++)
for(int j=; j<n; j++)
cin >> B[i][j];
Matrix C(m, m);
for(int i=; i<m; i++) {
for(int j=; j<m; j++) {
C[i][j] = ;
for(int k=; k<n; k++) {
C[i][j] += ( B[i][k]*A[k][j]);
C[i][j] %= ;
}
}
}
C = C^(n*n-); for(int i=; i<n; i++) {
for(int j=; j<n; j++) {
c1[i][j] = ;
for(int k=; k<m; k++) {
c1[i][j] += A[i][k]*C[k][j];
c1[i][j] %= ;
}
}
}
for(int i=; i<n; i++) {
for(int j=; j<n; j++) {
c2[i][j] = ;
for(int k=; k<m; k++) {
c2[i][j] += c1[i][k]*B[k][j];
}
}
} ans = ;
for(int i=; i<n; i++) {
for(int j=; j<n; j++) {
ans += (c2[i][j]%MOD);
}
}
cout << ans << endl;
}
} int main(){
input();
return ;
}
Fast Matrix Calculation HDU - 4965的更多相关文章
- hdu 4965 Fast Matrix Calculation(矩阵高速幂)
题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...
- HDU 4965 Fast Matrix Calculation(矩阵高速幂)
HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次.能够变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个 ...
- hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律
http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...
- HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂
题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...
- hdu 4965 Fast Matrix Calculation
题目链接:hdu 4965,题目大意:给你一个 n*k 的矩阵 A 和一个 k*n 的矩阵 B,定义矩阵 C= A*B,然后矩阵 M= C^(n*n),矩阵中一切元素皆 mod 6,最后求出 M 中所 ...
- HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...
- HDU 4965 Fast Matrix Calculation 矩阵快速幂
题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...
- HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律
一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...
- hdu4965 Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
随机推荐
- vs启动出错(chenlu-1):参数“basePath”不能是相对路径
参数“basePath”不能是相对路径 原因: 1.调试路径下没有exe文件.没有生成exe文件. 2.项目属性->配置属性->调试->命令中的参数被设置为相对路径.
- Linux ReviewBoard安装与配置
目录 0. 引言 1. 安装步骤 2. 配置站点 2.1 创建数据库 2.2 开始安装 2.3 修改文件访问权限 2.4 Web服务器配置 2.5 修改django相关配置 正文 回到顶部 0. 引言 ...
- Hadoop简单介绍
Hadoop历史 雏形开始于2002年的Apache的Nutch,Nutch是一个开源Java 实现的搜索引擎.它提供了我们运行自己的搜索引擎所需的全部工具.包括全文搜索和Web爬虫. 随后在2003 ...
- 24、设计模式、webpack
利用静态属性:长驻内存 (一) 单例模式 概念:单个实例,只有一个对象,多次创建,返回同一个对象. 单例模式的核心:==确保只有一个实例==,并提供全局访问. //利用了静态属性:长驻内存 funct ...
- 12 postgresql数据库备份和恢复
数据表结构备份与恢复 备份 1.找到postgres 安装目录,在找到bin文件夹,会看到一堆exe后缀的文件,用win+r 打开cmd,将pg_dump.exe 拖进cmd黑窗口中 2.基本语法:- ...
- pythonic operations
变量交换 >>> a, b = b, a 循环遍历区间元素 >>>for i in range(10): ... print (i) 返回的是生成器对象,生成器比列 ...
- 半夜两点灵光一现想出来的一个demo
功能: 1.用户通过页面下载Excel模板,按照模板填写数据,上传Excel , 服务器解析 ,绘制成折线图.柱状图.雷达图 ....... 2.用户在线编辑数据,绘图 (没想好咋弄) 可定制需求,根 ...
- 剑指offer——python【第31题】整数1出现的次数
题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...
- AttributeError: 'int' object has no attribute 'isdigit'(python下的isdigit函数)
python下的isdigit函数: isdigit() 方法检测字符串是否只由数字组成. 语法 isdigit()方法语法: str.isdigit() 示例代码如下: 结果: 我想说的重点在于 ...
- freertos 建立任务超过几个后系统不能能运行
/* *** NOTE *********************************************************** If you find your application ...