引言

1、读写分离:可以通过Spring提供的AbstractRoutingDataSource类,重写determineCurrentLookupKey方法,实现动态切换数据源的功能;读写分离可以有效减轻写库的压力,又可以把查询数据的请求分发到不同读库;

2、写数据库:当调用insert、update、delete及一些实时数据用到的库;

3、读数据库:当调用select查询数据用到的库;

4、JaveWeb工程通过AbstractRoutingDataSource类实现读写分离;

一、jdbc.properties文件配置读写数据源

datasource.type=mysql

datasource.driverClassName=com.mysql.jdbc.Driver

datasource.username=root

#写库w.datasource.url=jdbc\:mysql\://127.0.0.1\:3306/ddt?characterEncoding\=utf-8w.datasource.password=write123

#读库r.datasource.url=jdbc\:mysql\://IP\:3306/ddt?characterEncoding\=utf-8r.datasource.password=read123

#连接池配置

c3p0.acquireIncrement=3

c3p0.acquireRetryAttempts=10

c3p0.acquireRetryDelay=1000

c3p0.initialPoolSize=20

c3p0.idleConnectionTestPeriod=3600

c3p0.testConnectionOnCheckout=true

c3p0.minPoolSize=10

c3p0.maxPoolSize=80

c3p0.maxStatements=100

c3p0.numHelperThreads=10

c3p0.maxIdleTime=10800

 二、application.xml文件

<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:jee="http://www.springframework.org/schema/jee"

xmlns:tx="http://www.springframework.org/schema/tx" xmlns:context="http://www.springframework.org/schema/context"

xmlns:aop="http://www.springframework.org/schema/aop" xmlns:mvc="http://www.springframework.org/schema/mvc"

xmlns:task="http://www.springframework.org/schema/task"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-3.0.xsd

http://www.springframework.org/schema/jee

http://www.springframework.org/schema/jee/spring-jee-3.0.xsd

http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-3.0.xsd

http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-3.0.xsd

http://www.springframework.org/schema/task

http://www.springframework.org/schema/task/spring-task-3.0.xsd">    <!-- 使用annotation 自动注册bean,并保证@Required,@Autowired的属性被注入    -->

<context:component-scan base-package="com.eb3">

<context:include-filter type="annotation"            expression="org.springframework.stereotype.Service" />

<context:exclude-filter type="annotation"            expression="org.springframework.stereotype.Controller" />

</context:component-scan>

<bean class="org.springframework.beans.factory.config.PreferencesPlaceholderConfigurer" >

<property name="ignoreResourceNotFound" value="true" />

<property name="properties" ref="configProperties" />

</bean>

<bean id="configProperties" class="org.springframework.beans.factory.config.PropertiesFactoryBean">

<property name="locations">

<list>

<value>classpath*:jdbc.properties</value>

</list>

</property>

</bean>

<context:property-placeholder location="classpath:jdbc.properties"/>

<!-- 定义Hibernate读数据源 -->

<bean id="dataSourceRead" class="com.mchange.v2.c3p0.ComboPooledDataSource"

destroy-method="close">

<property name="driverClass">

<value>${datasource.driverClassName}</value>

</property>

<property name="jdbcUrl">

<value>${r.datasource.url}</value>

</property>

<property name="user">

<value>${datasource.username}</value>

</property>

<property name="password">

<value>${r.datasource.password}</value>

</property>

<!--当连接池中的连接耗尽的时候c3p0一次同时获取的连接数。-->

<property name="acquireIncrement">

<value>${c3p0.acquireIncrement}</value>

</property>

<!--定义在从数据库获取新连接失败后重复尝试的次数。-->

<property name="acquireRetryAttempts">

<value>${c3p0.acquireRetryAttempts}</value>

</property>

<!--两次连接中间隔时间,单位毫秒。-->

<property name="acquireRetryDelay">

<value>${c3p0.acquireRetryDelay}</value>

</property>

<property name="initialPoolSize">

<value>${c3p0.initialPoolSize}</value>

</property>

<property name="testConnectionOnCheckout">

<value>${c3p0.testConnectionOnCheckout}</value>

</property>

<property name="minPoolSize">

<value>${c3p0.minPoolSize}</value>

</property>

<property name="maxPoolSize">

<value>${c3p0.maxPoolSize}</value>

</property>

<property name="maxIdleTime">

<value>${c3p0.maxIdleTime}</value>

</property>

<property name="idleConnectionTestPeriod">

<value>${c3p0.idleConnectionTestPeriod}</value>

</property>

<property name="maxStatements">

<value>${c3p0.maxStatements}</value>

</property>

<property name="numHelperThreads">

<value>${c3p0.numHelperThreads}</value>

</property>

</bean>

<!-- 定义Hibernate写数据源 -->

<bean id="dataSourceWrite" class="com.mchange.v2.c3p0.ComboPooledDataSource"

destroy-method="close">

<property name="driverClass">

<value>${datasource.driverClassName}</value>

</property>

<property name="jdbcUrl">

<value>${w.datasource.url}</value>

</property>

<property name="user">

<value>${datasource.username}</value>

</property>

<property name="password">

<value>${w.datasource.password}</value>

</property>

<!--当连接池中的连接耗尽的时候c3p0一次同时获取的连接数。-->

<property name="acquireIncrement">

<value>${c3p0.acquireIncrement}</value>

</property>

<!--定义在从数据库获取新连接失败后重复尝试的次数。-->

<property name="acquireRetryAttempts">

<value>${c3p0.acquireRetryAttempts}</value>

</property>

<!--两次连接中间隔时间,单位毫秒。-->

<property name="acquireRetryDelay">

<value>${c3p0.acquireRetryDelay}</value>

</property>

<property name="initialPoolSize">

<value>${c3p0.initialPoolSize}</value>

</property>

<property name="testConnectionOnCheckout">

<value>${c3p0.testConnectionOnCheckout}</value>

</property>

<property name="minPoolSize">

<value>${c3p0.minPoolSize}</value>

</property>

<property name="maxPoolSize">

<value>${c3p0.maxPoolSize}</value>

</property>

<property name="maxIdleTime">

<value>${c3p0.maxIdleTime}</value>

</property>

<property name="idleConnectionTestPeriod">

<value>${c3p0.idleConnectionTestPeriod}</value>

</property>

<property name="maxStatements">

<value>${c3p0.maxStatements}</value>

</property>

<property name="numHelperThreads">

<value>${c3p0.numHelperThreads}</value>

</property>

</bean>

<!-- 动态数据源 -->

<bean id="dynamicDataSource" class="com.eb3.ddt.DynamicDataSource">

<!-- 通过key-value关联数据源 -->

<property name="targetDataSources">

<map>

<entry value-ref="dataSourceWrite" key="dataSourceWrite"></entry>

<entry value-ref="dataSourceRead" key="dataSourceRead"></entry>

</map>

</property>

<property name="defaultTargetDataSource" ref="dataSourceWrite" />

</bean>

<!-- 设置sessionFactory -->

<bean id="sessionFactory"

class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean">

<!--  依赖注入数据源,注入正是上文定义的dataSource -->

<property name="dataSource" ref="dynamicDataSource" />

<property name="packagesToScan" value="com.eb3.ddt.pojo,com.eb3.loan.pojo"/>

<!--定义Hibernate的SessionFactory的属性 -->

<property name="hibernateProperties">

<props>

<!--  指定Hibernate的连接方言-->

<prop key="hibernate.dialect">

${hibernate.dialect}

</prop>

<prop key="hibernate.connection.autocommit">${hibernate.connection.autocommit}</prop>

<!-- 制定Hibernate是否打印SQL语句 -->

<prop key="hibernate.show_sql">${hibernate.show_sql}</prop>

<prop key="hibernate.format_sql">${hibernate.format_sql}</prop>

<!-- 设create(启动创建),create-drop(启动创建,退出删除),update(启动更新),validate(启动验证) -->

<prop key="hibernate.hbm2ddl.auto">${hibernate.hbm2ddl.auto}</prop>

<prop key="connection.characterEncoding">utf-8</prop>

<!-- 设置二级缓存 -->

<prop key="hibernate.cache.user_query_cache">${hibernate.cache.user_query_cache}</prop>

<prop key="hibernate.user_second_level_cache">${hibernate.user_second_level_cache}</prop>

<prop key="hibernate.cache.provider_class">${hibernate.cache.class}</prop>

<prop key="hibernate.cache.provider_configuration_file_resource_path">${hibernate.ehcache_config_file}</prop>

</props>

</property>

</bean>

<!-- 事务管理器配置,单数据源事务 -->

<bean id="transactionManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager">

<property name="sessionFactory" ref="sessionFactory"/>

</bean>

<tx:advice id="txAdvice" transaction-manager="transactionManager">

<tx:attributes>

<tx:method name="save*"  propagation="REQUIRED" rollback-for="Exception"/>

<tx:method name="add*"   propagation="REQUIRED" rollback-for="Exception"/>

<tx:method name="delete*" propagation="REQUIRED" rollback-for="Exception"/>

<tx:method name="update*" propagation="REQUIRED" rollback-for="Exception"/>

<tx:method name="merge*"  isolation="READ_COMMITTED" propagation="REQUIRED" rollback-for="Exception"/>

<tx:method name="get*" read-only="true"/>

<tx:method name="find*" read-only="true"/>

<tx:method name="list*" read-only="true"/>

<tx:method name="select*" read-only="true"/>

<tx:method name="*" propagation="REQUIRED"  />

</tx:attributes>

</tx:advice>

<aop:config>

<aop:pointcut id="interceptorPointCuts"       expression="execution(* com.eb3.*.service.*.*(..))" />

<aop:advisor advice-ref="txAdvice"            pointcut-ref="interceptorPointCuts" />

</aop:config>

<aop:aspectj-autoproxy proxy-target-class="true" />

<!-- 定时器配置 task:scheduler@pool-size调度线程池的大小,调度线程在被调度任务完成前不会空闲 task:executor/@pool-size:可以指定执行线程池的初始大小、最大大小

task:executor/@queue-capacity:等待执行的任务队列的容量 task:executor/@rejection-policy:当等待队已满时的策略,分为丢弃、由任务执行器直接运行等方式

@Async 异步任务时 task任务执行线程数 task:scheduler 和 task:executor 两个线程池同样起作用 没有异步注解时

task任务执行线程数只受task:scheduler的线程池大小影响 -->

<!-- 声明一个具有10个线程的池,每一个对象将获取同样的运行机会 -->

<task:scheduler id="scheduler" pool-size="10" />

<task:executor id="executor" keep-alive="3600" pool-size="100-300" queue-capacity="500" rejection-policy="CALLER_RUNS" />

<task:annotation-driven executor="executor" scheduler="scheduler" />

</beans>

三、继承AbstractRoutingDataSource类的动态数据源类DynamicDataSource

package com.eb3.ddt;

import org.springframework.jdbc.datasource.lookup.AbstractRoutingDataSource;

public class DynamicDataSource extends AbstractRoutingDataSource {

/**

* 重写determineCurrentLookupKey方法

*/

@Override

protected Object determineCurrentLookupKey() {

Object obj = DBHelper.getDbType();

return obj;

}

}

四、DBHelper工具类

package com.eb3.ddt;

import org.apache.commons.lang.StringUtils;

public class DBHelper {

private static ThreadLocal<String> dbContext = new ThreadLocal<String>();

// 写数据源标识

public final static String DB_WRITE = "dataSourceWrite";

// 读数据源标识

public final static String DB_READ = "dataSourceRead";

/**

* 获取数据源类型,即是写数据源,还是读数据源

*

* @return

*/

public static String getDbType() {

String db_type = dbContext.get();

if (StringUtils.isEmpty(db_type)) {

// 默认是写数据源

db_type = DB_WRITE;

}

return db_type;

}

/**

* 设置该线程的数据源类型

*

* @param str

*/

public static void setDbType(String str) {

dbContext.set(str);

}

}

五、服务层调用

/*@Aspect 此注解会影响数据源切换,运行代码得知不加的话会先执行DynamicDataSource里的determineCurrentLookupKey方法,后执行Service层里DBHelper.setDbType()方法,导致数据源切换失败!*/

@Aspect

@Component("userService")public class UserServiceImpl extends BaseServiceImpl<User, User, Integer> implements UserService {

@Resource

private UserDao userDao;

@Override

protected BaseDao<User, Integer> getDao() {

return this.userDao;

}

@Override

public void save(User user) {

DBHelper.setDbType(DBHelper.DB_WRITE); // 写库 (向数据库中写)

this.userDao.save(user);

}

@Override

public User findByUserName(String username) {

DBHelper.setDbType(DBHelper.DB_READ); // 读库 (从数据库中向外读)

List<User> userList = this.userDao.findBy("username", username);

return CollectionUtils.isNotEmpty(userList) ? userList.get(0) : null;

}

}

Java实现数据库的读写分离的更多相关文章

  1. Mycat - 实现数据库的读写分离与高可用

    前言 开心一刻 上语文课,不小心睡着了,坐在边上的同桌突然叫醒了我,并小声说道:“读课文第三段”.我立马起身大声读了起来.正在黑板写字的老师吓了一跳,老师郁闷的看着我,问道:“同学有什么问题吗?”,我 ...

  2. 如何轻松实现MySQL数据库的读写分离和负载均衡?

    配置好了 Mysql 的主从复制结构后,我们希望实现读写分离,把读操作分散到从服务器中,并且对多个从服务器能实现负载均衡.读写分离和负载均衡是 Mysql 集群的基础需求,MaxScale 就可以帮着 ...

  3. 利用oneproxy部署mysql数据库的读写分离

    实验系统:CentOS 6.6_x86_64 实验前提:防火墙和selinux都关闭 实验说明:本实验共有4台主机,IP分配如拓扑 实验软件:mariadb-10.0.20 oneproxy-rhel ...

  4. MySQL搭建主从数据库 实现读写分离

    首先声明,实际生产中,网站为了提高用户体验,性能等,将数据库实现读写分离是有必要的,我们让主数据库去写入数据,然后当用户查询的时候,然后在从数据库读取数据,故能减轻数据库的压力,实现良好的用户体验! ...

  5. 基于 EntityFramework 的数据库主从读写分离服务插件

    基于 EntityFramework 的数据库主从读写分离服务插件 1. 版本信息和源码 1.1 版本信息 v1.01 beta(2015-04-07),基于 EF 6.1 开发,支持 EF 6.1 ...

  6. 基于 EntityFramework 的数据库主从读写分离架构 - 目录

    基于 EntityFramework 的数据库主从读写分离架构       回到目录,完整代码请查看(https://github.com/cjw0511/NDF.Infrastructure)中的目 ...

  7. 基于 EntityFramework 的数据库主从读写分离架构(1) - 原理概述和基本功能实现

        回到目录,完整代码请查看(https://github.com/cjw0511/NDF.Infrastructure)中的目录:      src\ NDF.Data.EntityFramew ...

  8. springboot+mybatis实现数据库的读写分离

    介绍 随着业务的发展,除了拆分业务模块外,数据库的读写分离也是常见的优化手段.方案使用了AbstractRoutingDataSource和mybatis plugin来动态的选择数据源选择这个方案的 ...

  9. 基于amoeba实现mysql数据库的读写分离/负载均衡

    一.Amoeba的简述:[来自百度百科]      Amoeba是一个以MySQL为底层数据存储,并对应用提供MySQL协议接口的proxy.它集中地响应应用的请求,依据用户事先设置的规则,将SQL请 ...

随机推荐

  1. Ext.Direct最新版源码下载地址

    以前的地址用不了,现在地址更新为: 全平台: http://www.sencha.com/forum/showthread.php?67992-Ext.Direct-Server-side-Stack ...

  2. springboot json返回null问题处理

    在开发过程中,我们需要统一返回前端json格式的数据,但有些接口的返回值存在 null或者""这种没有意义的字段.以上不仅影响理解,还浪费带宽,这时我们可以统一做一下处理:不返回空 ...

  3. HDFS集群数据不均衡处理

    一.概述 公司使用是自己搭建的hadoop集群,版本2.7.3,最近发现出现了hdfs数据存储不均衡的现象,其中有一个datanode使用了65%,而有一个只使用了20%.hadoop集群使用的时间长 ...

  4. 技术人员在小公司成长 vs 大公司成长路径和建议

    我们经常听到这样的对话: 大公司猿A:真不想干了,每天都做类似的工作,学不到什么东西,会议也多,浪费不少时间,想去小公司多做些事情,多学些东西. 小公司猿B:累死了,什么都做,太乱太杂,没系统不规范, ...

  5. 跨域请求中预检请求options之坑

    一.前言 因为跨域请求,浏览器可能(后面讲)会发送一次options请求,如果处理不好,跨域还是会gg的. 之前很少涉及跨域,涉及也是简单请求(下面阮老师文章中区别热简单请求和复杂请求),所以基本不会 ...

  6. MySQL查看 InnoDB表中每个索引的高度

    我们都知道MySQL里,索引通常用B+树来实现的.B+树的叶子结点才具体保存数据(聚簇索引保存的是行数据:普通索引是主键,如有需要得回表),非叶子结点都是用来索引叶子结点的.假设索引高度为h,那么每次 ...

  7. 阿里云服务器 Mysql数据库的安装和使用

    为了做服务迁移,mysql的安装总是不那么顺利, 教程很多, 但都不能够一蹴而就, 所以,单独总结一篇, 当然也借鉴了一些前辈的经验. ================================ ...

  8. IP白名单添加了当前IP,获取access_token时依然报出错误码40164的坑

    开发公众号网页时,想要调用微信API接口,令人无奈的是,想要调用各接口都需使用access_token,于是,获取access_token的征途开始了…… 1.开发者基本配置 (1) 公众平台官网登录 ...

  9. KVM虚拟化原理与基础应用示例

    一.KVM简介 Kernel-based Virtual Machine的简称,是一个开源的系统虚拟化模块,自Linux 2.6.20之后集成在Linux的各个主要发行版本中.它使用Linux自身的调 ...

  10. 活字格 QQ 群和客户

    上活字格的官网溜达了一圈,有2点收获: 1. 活字格基础教学 QQ 群 这个群居然有1790人!好大的一个群,是不是说明学活字格的人也多呢,我潜水几天看看先 2. 活字格的用户真是各行各业都有,看到他 ...