终于开始写dp了,还很不熟练

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.

Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.

Input

* Line 1: Two space separated integers: T and W

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

Output

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

Sample Input

7 2
2
1
1
2
2
1
1

Sample Output

6

Hint

INPUT DETAILS:

Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.

OUTPUT DETAILS:

Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.

 
分析:状态:dp[i][j]表示在第i分钟时,已经移动了j次后得到的苹果数量。
状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]),然后判断当前是否在第i分钟掉苹果的那颗树下,是的话,dp[i][j]++。
对状态转移方程的解释如下:第i分钟能得到的苹果数量,等于在第i-1分钟时,在树1和树2下得到苹果的最大值。j为偶数则在树1下面,奇数则在树2下面。

dp 动态规划 之C - Apple Catching 简单基础的更多相关文章

  1. poj 2385 Apple Catching 基础dp

    Apple Catching   Description It is a little known fact that cows love apples. Farmer John has two ap ...

  2. poj2385 Apple Catching (线性dp)

    题目传送门 Apple Catching Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 154 ...

  3. Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9831   Accepted: 4779 De ...

  4. BZOJ 3384: [Usaco2004 Nov]Apple Catching 接苹果( dp )

    dp dp( x , k ) = max( dp( x - 1 , k - 1 ) + *** , dp( x - 1 , k ) + *** ) *** = 0 or 1 ,根据情况 (BZOJ 1 ...

  5. 【POJ】2385 Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13447   Accepted: 6549 D ...

  6. 【POJ - 2385】Apple Catching(动态规划)

    Apple Catching 直接翻译了 Descriptions 有两棵APP树,编号为1,2.每一秒,这两棵APP树中的其中一棵会掉一个APP.每一秒,你可以选择在当前APP树下接APP,或者迅速 ...

  7. POJ 2385 Apple Catching【DP】

    题意:2棵苹果树在T分钟内每分钟随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果.思路:不妨按时间来思考,一给定时刻i,转移次数已知为j, 则它只 ...

  8. Day 5 笔记 dp动态规划

    Day 5 笔记 dp动态规划 一.动态规划的基本思路 就是用一些子状态来算出全局状态. 特点: 无后效性--狗熊掰棒子,所以滚动什么的最好了 可以分解性--每个大的状态可以分解成较小的步骤完成 dp ...

  9. (转)dp动态规划分类详解

    dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...

随机推荐

  1. top命令查看进程下线程信息以及jstack的使用

    转自:https://www.cnblogs.com/shengulong/p/8513652.html top -Hp pid可以查看某个进程的线程信息 -H 显示线程信息,-p指定pid jsta ...

  2. phpstorm配置Xdebug进行调试

    运行环境: PHPSTORM版本 : 8.0.1 PHP版本 : 5.6.2 xdebug版本:php_xdebug-2.2.5-5.6-vc11-x86_64.dll ps : php版本和xdeb ...

  3. 趁webpack5还没出,先升级成webpack4吧

    上一次将webpack1升级到3,也仅是 半年前,前端工具发展变化太快了,如今webpack4已经灰常稳定,传说性能提升非常高,值得升级. 一直用着的webpack3越来越慢,一分多钟的编译时间简直不 ...

  4. openssl rsa/pkey

    openssl系列文章:http://www.cnblogs.com/f-ck-need-u/p/7048359.html openssl rsa和openssl pkey分别是RSA密钥的处理工具和 ...

  5. CMD下进入MYSQL的命令

    CMD下进入MYSQL的命令 mysql -h localhost -u root -p 切到MYSQL的bin目录下,输入上面命令,回车 然后输入密码 回车

  6. code for qint function

    function [p,y,a] = qint(ym1,y0,yp1) %QINT - quadratic interpolation of three adjacent samples % % [p ...

  7. WPF通过附加属性控制窗口关闭

    场景1 当使用 ShowDialog() 方式显示窗口时,通过定义附加属性的方式可实现在 ViewModel 中进行数据绑定(bool?)来控制子窗口的显示和关闭 public class ExWin ...

  8. ViewModel处理View相关事件的多种方式(非技术贴,仅学习总结)

    众所周知,在UWP中,微软为我们提供了一种新的绑定方式:x:bind,它是基于编译时的绑定.在性能方面,运行时绑定Binding与它相比还是有些逊色的.因此针对一些确定的.不需要变更的数据,我们完全有 ...

  9. python中收集函数的解包问题

    收集参数的解包问题 - 把参数放入list或者字典中,直接把list/dict中的值放入收集参数中- 语法:参照案例 # 收集参数的问题 def stu(*args): print("=&q ...

  10. css中那些属性可以被继承

    主要的有: 字体相关:line-height, font-family, font-size, font-style, font-variant, font-weight, font 文本相关: le ...