终于开始写dp了,还很不熟练

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.

Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.

Input

* Line 1: Two space separated integers: T and W

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

Output

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

Sample Input

7 2
2
1
1
2
2
1
1

Sample Output

6

Hint

INPUT DETAILS:

Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.

OUTPUT DETAILS:

Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.

 
分析:状态:dp[i][j]表示在第i分钟时,已经移动了j次后得到的苹果数量。
状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]),然后判断当前是否在第i分钟掉苹果的那颗树下,是的话,dp[i][j]++。
对状态转移方程的解释如下:第i分钟能得到的苹果数量,等于在第i-1分钟时,在树1和树2下得到苹果的最大值。j为偶数则在树1下面,奇数则在树2下面。

dp 动态规划 之C - Apple Catching 简单基础的更多相关文章

  1. poj 2385 Apple Catching 基础dp

    Apple Catching   Description It is a little known fact that cows love apples. Farmer John has two ap ...

  2. poj2385 Apple Catching (线性dp)

    题目传送门 Apple Catching Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 154 ...

  3. Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9831   Accepted: 4779 De ...

  4. BZOJ 3384: [Usaco2004 Nov]Apple Catching 接苹果( dp )

    dp dp( x , k ) = max( dp( x - 1 , k - 1 ) + *** , dp( x - 1 , k ) + *** ) *** = 0 or 1 ,根据情况 (BZOJ 1 ...

  5. 【POJ】2385 Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13447   Accepted: 6549 D ...

  6. 【POJ - 2385】Apple Catching(动态规划)

    Apple Catching 直接翻译了 Descriptions 有两棵APP树,编号为1,2.每一秒,这两棵APP树中的其中一棵会掉一个APP.每一秒,你可以选择在当前APP树下接APP,或者迅速 ...

  7. POJ 2385 Apple Catching【DP】

    题意:2棵苹果树在T分钟内每分钟随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果.思路:不妨按时间来思考,一给定时刻i,转移次数已知为j, 则它只 ...

  8. Day 5 笔记 dp动态规划

    Day 5 笔记 dp动态规划 一.动态规划的基本思路 就是用一些子状态来算出全局状态. 特点: 无后效性--狗熊掰棒子,所以滚动什么的最好了 可以分解性--每个大的状态可以分解成较小的步骤完成 dp ...

  9. (转)dp动态规划分类详解

    dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...

随机推荐

  1. vue 周期函数

    先简单说说vue中周期函数 beforeCreate(创建前) created(创建后) beforeMount(载入前) mounted(载入后) beforeUpdate(更新前) updated ...

  2. git在工作中的用法总结-环境安装篇

    使用git有很长一段时间了 ,平时用到的时候都是直接google,经常用到的一些也记录在笔记中,但有时候笔记太多,实在是太乱了(其实是我太懒~ 哈?),找都要半天的时候还不如直接google,今天有空 ...

  3. Spring之Bean的配置方式

    在博客中为了演示容器Bean实例化时暴露出的几个接口,将UserBean配置在XML中,其实常见的Bean的配置有3种.1.基于xml配置Bean 2.使用注解定义Bean 3.基于java类提供Be ...

  4. NABCD校园生活

    N(Need,需求) 在校师生得到的信息分散,极大的影响了师生的学习效率,所以就会有快速得到全面信息的需求,而我们的APP正是在解决这个问题. A(Approach,做法) 我们会在主页进行信息分类, ...

  5. 强烈推荐:240多个jQuery插件

    概述 jQuery 是继 prototype 之后又一个优秀的 Javascript 框架.其宗旨是—写更少的代码,做更多的事情.它是轻量级的 js 库(压缩后只有21k) ,这是其它的 js 库所不 ...

  6. 在Web.config或App.config中的添加自定义配置 <转>

        .Net中的System.Configuration命名空间为我们在web.config或者app.config中自定义配置提供了完美的支持.最近看到一些项目中还在自定义xml文件做程序的配置 ...

  7. 乐字节-Java8新特性之Date API

    上一篇文章,小乐给大家带来了Java8新特性之Optional,接下来本文将会给大家介绍Java8新特性之Date API 前言: Java 8通过发布新的Date-Time API来进一步加强对日期 ...

  8. Apollo源码阅读笔记(一)

    Apollo源码阅读笔记(一) 先来一张官方客户端设计图,方便我们了解客户端的整体思路. 我们在使用Apollo的时候,需要标记@EnableApolloConfig来告诉程序开启apollo配置,所 ...

  9. JVM内存:年轻代、老年代、永久代(推荐 转)

    参考文章: 1.Java 新生代.老年代.持久代.元空间 2.Java内存与垃圾回收调优 3.方法区的Class信息,又称为永久代,是否属于Java堆? Java 中的堆是 JVM 所管理的最大的一块 ...

  10. 5大JavaScript前端框架简介

    译者按: 简要介绍五大前端框架特性 原文: Top 5 JavaScript Frameworks 译者: Fundebug 为了保证可读性,本文采用意译而非直译.另外,本文版权归原作者所有,翻译仅用 ...