前言

上一篇文章讨论的二叉搜索树,其时间复杂度最好的情况下是O(log(n)),但是最坏的情况是O(n),什么时候是O(n)呢?

像这样:

如果先插入10,再插入20,再插入30,再插入40就会成上边这个样子

这个就像是双向链表,我们期望它是下面这个样子:

所以我们希望有一种策略能够将第一个图变成第二个图,或者说使树的结构不会产生像第一种图的形式

实现这种策略的一种方式是AVL树

AVL树

AVL树的名称是以它的发明家的名字命名的:Adel’son-Vel’skii和Landis

满足高度平衡属性的二叉树就是AVL树

高度平衡属性是:对于树中的每一个位置p,p的孩子的高度最多相差1

很显然前言中的第一个图并不满足高度平衡属性,第二个是满足的。

同时高度平衡属性也意味着一颗AVL树的子树同样是AVL树

并且可以通过证明(这里就不再证了)得到AVL树的高度是O(log n)

所以得出结论,AVL树可以使时间复杂度保持O(log n)

接下来的问题就是怎样保持二叉树的高度平衡属性

保持二叉树的高度平衡属性

要保持高度平衡属性的原因是破坏了高度平衡属性

破坏的方式有两种:添加节点与删除节点

添加节点如图:

添加50的时候,就会破坏高度平衡属性

删除节点如图:

删除10的时候也会破坏高度平衡属性

最后,不论是添加节点还是删除节点,都会使树变成非高度平衡的状态,这种非高度平衡的状态有4种:

1.LL

LL是left-left,可以理解为:首先它不平衡,其次根节点的左子树比右子树高,并且根节点的左子树的左子树比根节点的左子树的右子树高。(从上到下都是左边高)

2.LR

LR是left-right,可以理解为:首先它不平衡,其次根节点的左子树比右子树高,并且根节点的左子树的右子树比根节点的左子树的左子树高。(从上到下先左高后右高)

3.RR

RR是right-right,可以理解为:首先它不平衡,其次根节点的右子树比左子树高,并且根节点的右子树的右子树比根节点的右子树的左子树高。(从上到下都是右边高)

4.RL

RL是right-left,可以理解为:首先它不平衡,其次根节点的右子树比左子树高,并且根节点的右子树的左子树比根节点的右子树的右子树高。(从上到下先右高后左高)

最后,判断是哪种形式的非平衡状态,一定要从不平衡的节点位置看,并不是看4层,比如:

这里只有3层节点,不平衡的节点是20,20的左子树比右子树高,10的左子树比右子树高,所以是LL。(这里的高定义为节点5的高度为1,空节点的高度为0)

接下来是保持高度平衡的调整策略:

同样对于4种不同的形式有4种解决方案:

1.LL

这个变换就像是以10为中心,向右旋转,使10变成根节点,10的左子树不变,右子树变成了20,多余出的15正好挂在由于变换失去了左子树的20的左边。变换后结点从左到右的顺序依然没有变,所以15是正好挂在20的左边的。

2.RR

RR与LL形式差不多,只不顾是反着来的。相当于进行一次左旋转。

RR与LL都只进行一次旋转即可,而LR与RL需要进行两次旋转

3.LR

第一次相当于对5、10、15、17这棵子树进行了一次RR旋转,旋转方式与之前的RR方式相同,就像是以15为中心向左旋转,旋转的结果使得整棵树变成了LL的不平衡形态,然后再按照LL的旋转方式对整棵树处理。

4.RL

RL同样是LR的相反模式,先将22、25、30、40这棵子树进行LL旋转,再将整棵树进行RR旋转

理解了avl保持平衡从方式后,就可以用代码来实现了

Python实现

我们使用AVL对上一篇文章中的有序映射进行优化

因为AVL依赖于节点的高度,所以首先要重写一下Node类:


class AvlTree(OrderedMap): class Node(OrderedMap.Node):
def __init__(self, element, parent=None, left=None, right=None):
super().__init__(element,parent,left,right)
self.height = 0 def left_height(self):
return self.left.height if self.left is not None else 0 def right_height(self):
return self.right.height if self.right is not None else 0

接下来定义4中调整的非公开方法


def _left_left(self,p):
this = p.node # 有变化的就4个节点
left = this.left
parent = this.parent
left_right = this.left.right
if parent is not None:
if this is parent.left:
parent.left = left
else:
parent.right = left
else:
self._root = left
this.parent = left
left.parent = parent
this.left = left_right
left.right = this
if left_right is not None:
left_right.parent = this def _right_right(self,p):
this = p.node # 有变化的就4个节点
right = this.right
parent = this.parent
right_left = this.right.left
if parent is not None:
if this is parent.left:
parent.left = right
else:
parent.right = right
else:
self._root = right
this.parent = right
right.parent = parent
this.right = right_left
right.left = this
if right_left is not None:
right_left.parent = this def _left_right(self,p):
self._right_right(self.left(p))
self._left_left(p) def _right_left(self,p):
self._left_left(self.right(p))
self._right_right(p)

然后是用于平衡二叉树的方法,也就是根据情况调用上边那4种策略


def _isbalanced(self,p):
"""判断节点是否平衡""" return abs(p.node.left_height() - p.node.right_height()) <= 1 def _recompute_height(self,p):
"""重新计算高度"""
p.node.height = 1 + max(p.node.left_height(),p.node.right_height()) def _rebalanced(self,p):
while p is not None:
if self._isbalanced(p):
self._recompute_height(p)
p = self.parent(p)
else: if p.node.left_height()>p.node.right_height() and p.node.left.left_height()>p.node.left.right_height():
# LL的情况,只有自己和左孩子的高度可能变化
self._left_left(p)
elif p.node.right_height()>p.node.left_height() and p.node.right.right_height()>p.node.right.left_height():
# RR的情况,只有自己和右孩子的高度可能变化
self._right_right(p)
elif p.node.left_height()>p.node.right_height() and p.node.left.left_height()<p.node.left.right_height():
# LR的情况,只有自己和左孩子和左孩子的右孩子的高度可能变化
left = self.left(p)
self._left_right(p)
self._recompute_height(left)
else:
# RL的情况,只有自己和右孩子和右孩子的左孩子的高度可能变化
right = self.right(p)
self._right_left(p)
self._recompute_height(right)
while p is not None:
# 调整所有p的祖先的高度
self._recompute_height(p)
p = self.parent(p)

然后把方法封装成删除时和插入时的两个方法,虽然执行的内容是相同的


def _rebalanced_insert(self,p):
"""插入时的平衡调整"""
self._rebalanced(p) def _rebalanced_delete(self, p):
"""删除时的平衡调整"""
self._rebalanced(p)

最后重写一下setitem方法与删除时调用的方法


def __setitem__(self, k, v):
"""优化setitem"""
if self.is_empty():
leaf = self.add_root(self._Item(k, v))
else: p = self._subtree_search(self.root(), k)
if p.key() == k:
p.element().value = v
return
else:
item = self._Item(k, v)
if p.key() < k:
leaf = self.add_right(p, item)
else:
leaf = self.add_left(p, item)
self._rebalanced_insert(leaf) def mapdelete(self, p):
if self.left(p) and self.right(p): # 两个孩子都有的时候
replacement = self._subtree_last_position(
self.left(p)) # 用左子树最右位置代替
self.replace(p, replacement.element())
p = replacement
parent = self.parent(p)
self.delete(p)
self._rebalanced_delete(parent)

在实现4种平衡策略时,一定要记着将整棵树的根节点更新,不然遍历的时候,根节点指的就不是真正的根节点了。

详细理解平衡二叉树AVL与Python实现的更多相关文章

  1. 数据结构与算法--从平衡二叉树(AVL)到红黑树

    数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况&q ...

  2. 平衡二叉树AVL - 插入节点后旋转方法分析

    平衡二叉树 AVL( 发明者为Adel'son-Vel'skii 和 Landis)是一种二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1. 首先我们知道,当插入一个节点,从此插入点到树根 ...

  3. iOS - 详细理解KVC与KVO

    详细理解KVC与KVO 在面试的时候,KVC与KVO有些时候还是会问到的,并且他们都是Objective C的关键概念,在这里我们先做一个简单地介绍: (一)KVC: KVC即指:NSKeyValue ...

  4. 二叉查找树(BST)、平衡二叉树(AVL树)(只有插入说明)

    二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点, ...

  5. AVL树Python实现

    # coding=utf-8 # AVL树Python实现 def get_height(node): return node.height if node else -1 def tree_mini ...

  6. 史上最详细的C语言和Python的插入排序算法

    史上最详细的C语言和Python的插入排序算法插入排序原理:所谓插入排序,就像我们在打牌(斗地主)时,整理我们自己手中自己的牌一样,就像是2,1,3,9,J,K,5,4,这四张牌.我们要把它其中的几张 ...

  7. [转帖]linux中systemctl详细理解及常用命令

    linux中systemctl详细理解及常用命令 2019年06月28日 16:16:52 思维的深度 阅读数 30 https://blog.csdn.net/skh2015java/article ...

  8. 二叉查找树、平衡二叉树(AVL)、B+树、联合索引

    1. [定义] 二叉排序树(二拆查找树)中,左子树都比节点小,右子树都比节点大,递归定义. [性能] 二叉排序树的性能取决于二叉树的层数 最好的情况是 O(logn),存在于完全二叉排序树情况下,其访 ...

  9. linux中systemctl详细理解及常用命令

    linux中systemctl详细理解及常用命令 https://blog.csdn.net/skh2015java/article/details/94012643 一.systemctl理解 Li ...

随机推荐

  1. lucene简单搜索demo

    方法类 package com.wxf.Test; import com.wxf.pojo.Goods; import org.apache.lucene.analysis.standard.Stan ...

  2. Go HTTP服务器

    HTTP HandleFunc的简单使用 package main import ( "log" "net/http" ) func main() { //注册 ...

  3. dfs问题总结

    组合总和——给定元素不重复 需求:给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candida ...

  4. 精读JavaScript模式(六),Memoization模式与函数柯里化的应用

    假期就这么结束了!十天假就有三天在路上,真的难受!想想假期除了看了两场电影貌似也没做什么深刻印象的事情.流浪地球,特效还是很赞,不过对于感情的描写还是逃不掉拖沓和尴尬的通病,对于国产科幻还是抱有支持的 ...

  5. Linux 源码安装 FFmpeg

    加班次数频繁,已经快一年没有写博了.由于此次在项目中使用到了 FFmpeg 来处理音视频,顾记录下在 Linux 系统中源码安装 FFmpeg 以便不时之需. 1. 安装 yasm yasm 是一个汇 ...

  6. MySQL多表查询练习题

    一.准备数据 #创建表及插入记录 CREATE TABLE class ( cid ) NOT NULL AUTO_INCREMENT, caption ) NOT NULL, PRIMARY KEY ...

  7. Linux进程间通信(System V) --- 共享内存

    共享内存 IPC 原理 共享内存进程间通信机制主要用于实现进程间大量的数据传输,下图所示为进程间使用共享内存实现大量数据传输的示意图: 共享内存是在内存中单独开辟的一段内存空间,这段内存空间有自己特有 ...

  8. VirtualBox centos7扩容

    有时候扩容还真不如重新建立一个大硬盘的系统,但是如果你安装了好多东西的话,那还是来扩容一下吧. 查看磁盘格式           在virtualBox中右键点击虚拟机->设置->存储,如 ...

  9. Task.Run Vs Task.Factory.StartNew 【收藏】

    在.Net 4中,Task.Factory.StartNew是启动一个新Task的首选方法.它有很多重载方法,使它在具体使用当中可以非常灵活,通过设置可选参数,可以传递任意状态,取消任务继续执行,甚至 ...

  10. ASP.NET WebAPI 集成 Swagger 启用 OAuth 2.0 配置问题

    在 ASP.NET WebAPI 集成 Swagger 后,由于接口使用了 IdentityServer 做的认证,调试起来很不方便:看了下 Swashbuckle 的文档 ,是支持 OAuth2.0 ...