【CF434D】Nanami's Power Plant

题意:有n个二次函数$y=a_ix^2+b_ix+c_i$($a_i,b_i,c_i$是整数),第i个函数要求x的取值在$[l_i,r_i]$之间且为整数。你需要确定每个函数的x的取值,使得所有函数的函数值之和最大。还有m个限制,每条限制形如$u,v,d$,表示$x_u\le x_v+d$。求最大函数值之和。

$n\le 50,m\le 100,-100\le l_i\le r_i\le 100$

题解:傻逼了连切糕都忘了。

对于一个方程,我们把它的所有可能取值按照x从小到大串成一串,首尾分别与S和T相连,其中第i个点和第i+1个点的边的容量为当$x=l+i-1$时的函数值(由于可能存在负数,我们给每条边的权值都加上一个大数,最后再把这个大数减去)。对于限制u,v,d,我们从u中所有代表$x_u=i$的点向v中代表$x_v=i-d$的点连一条容量inf的边,便完成了限制。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
const ll big=1ll<<30;
const ll inf=1ll<<50;
int n,m,tot,S,T,cnt;
ll ans;
int L[60],R[60],to[200010],nxt[200010],head[12000],d[12000];
int p[60][210];
ll val[200010],A[60],B[60],C[60];
queue<int> q;
inline void add(int a,int b,ll c)
{
to[cnt]=b,val[cnt]=c,nxt[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,val[cnt]=0,nxt[cnt]=head[b],head[b]=cnt++;
}
ll dfs(int x,ll mf)
{
if(x==T) return mf;
int i;
ll temp=mf,k;
for(i=head[x];i!=-1;i=nxt[i]) if(val[i]&&d[to[i]]==d[x]+1)
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=-1;
temp-=k,val[i]-=k,val[i^1]+=k;
if(!temp) break;
}
return mf-temp;
}
inline int bfs()
{
while(!q.empty()) q.pop();
int i,u;
memset(d,0,sizeof(d));
q.push(S),d[S]=1;
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=nxt[i]) if(val[i]&&!d[to[i]])
{
d[to[i]]=d[u]+1;
if(to[i]==T) return 1;
q.push(to[i]);
}
}
return 0;
}
int main()
{
//freopen("cf434D.in","r",stdin);
scanf("%d%d",&n,&m);
S=0,T=tot=1;
int i,j,a,b,c;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++) scanf("%lld%lld%lld",&A[i],&B[i],&C[i]);
for(i=1;i<=n;i++)
{
scanf("%d%d",&L[i],&R[i]);
add(S,tot+1,inf);
for(j=L[i];j<=R[i];j++)
{
p[i][j-L[i]]=++tot;
add(tot,tot+1,big-(A[i]*j*j+B[i]*j+C[i]));
}
p[i][R[i]-L[i]+1]=++tot;
add(tot,T,inf);
}
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
for(j=max(L[b],L[a]-c);j<=min(R[b],R[a]-c)+1;j++)
{
add(p[a][j+c-L[a]],p[b][j-L[b]],inf);
}
}
while(bfs()) ans+=dfs(S,inf);
printf("%lld",big*n-ans);
return 0;
}

【CF434D】Nanami's Power Plant 最小割的更多相关文章

  1. CF434D Nanami's Power Plant 最小割

    传送门 因为连距离限制的边的细节调了贼久QAQ 这个题和HNOI2013 切糕性质相同,都是有距离限制的最小割问题 对于每一个函数,用一条链记录变量\(x\)在不同取值下这个函数的贡献.对于一个\(x ...

  2. Codeforces Round #248 (Div. 1) D - Nanami's Power Plant 最小割

    D - Nanami's Power Plant 思路:类似与bzoj切糕那道题的模型.. #include<bits/stdc++.h> #define LL long long #de ...

  3. CF434D Nanami's Power Plant

    就是切糕那道题,首先对每个函数连一串,然后\(x_u\leq x_v+d\)这个条件就是\(u\)函数\(i\)取值连向\(v\)函数\(i-d\)取值边权为inf,然后答案就是最小割了. #incl ...

  4. CodeForces - 434D Nanami's Power Plant

    Codeforces - 434D 题目大意: 给定一个长为n的序列,序列中的第i为上的值\(x_i\),序列第i位上的值\(x_i\in[l_i,r_i]\),价值为\(f_i(x_i)\),其中\ ...

  5. 【HDU 5855】Less Time, More profit(网络流、最小割、最大权闭合子图)

    Less Time, More profit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/O ...

  6. UVA 10480 Sabotage (网络流,最大流,最小割)

    UVA 10480 Sabotage (网络流,最大流,最小割) Description The regime of a small but wealthy dictatorship has been ...

  7. bzoj1565【NOI2009】植物大战僵尸(最小割)

    题目描述 Plants vs. Zombies(PVZ)是最近十分风靡的一款小游戏.Plants(植物)和Zombies(僵尸)是游戏的主角,其中Plants防守,而Zombies进攻.该款游戏包含多 ...

  8. UVA10480:Sabotage(最小割+输出)

    Sabotage 题目链接:https://vjudge.net/problem/UVA-10480 Description: The regime of a small but wealthy di ...

  9. 【二分 最小割】cf808F. Card Game

    Digital collectible card games have become very popular recently. So Vova decided to try one of thes ...

随机推荐

  1. JSAP103

    JSAP103 1.节点 1)定义:不是元素,节点是页面中的所有内容(标签,属性,文本),Node.它使得任何标签中的元素获取都十分方便 2)节点的相关属性 可以使用标签即元素点出来,可以使用属性节点 ...

  2. springboot获取properties文件的配置内容(转载)

    1.使用@Value注解读取读取properties配置文件时,默认读取的是application.properties. application.properties: demo.name=Name ...

  3. Android Studio3.1.2升级问题:Configuration 'compile' is obsolete and has been replaced with 'implementation'.

    每次升级Android Studio时,一般情况下Gradle版本的也会相应的升级,我之前Android Studio 3.0.1.Gradle 是4.1升级后为:Android Studio 3.1 ...

  4. MyBatis项目快速搭建及MySQL一个Statement支持多条命令参数

    一.简述 本文以笔记的形式,记录一个基本Mybatis项目的使用,方便后期项目使用到相关配置时直接复制使用. 二.项目结构 pom.xml中的依赖 <!-- https://mvnreposit ...

  5. html5使用canvas动态画医学设备毫秒级数据波形图

  6. libreoffice python 操作word及excel文档

    1.开始.关闭libreoffice服务: 开始之前同步字体文件时间,是因为创建soffice服务时,服务会检查所需加载的文件的时间,如果其认为时间不符,则其可能会重新加载,耗时较长,因此需事先统一时 ...

  7. 每天一个linux命令(14):head命令

    1.命令简介 head (head) 用来显示档案的开头至标准输出中.如果指定了多于一个文件,在每一段输出前会给出文件名作为文件头.如果不指定文件,或者文件为"-",则从标准输入读 ...

  8. go微服务框架go-micro深度学习(四) rpc方法调用过程详解

    上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地 ...

  9. geos 3.6.3库windows版本 已编译完成的32位版本和64位版本

    网上教编译方法的很多,直接分享编译完成的很少. 我就把编译完成的分享出来吧. ​geos-3.6.3.tar.bz2 (Changes) 版本的 https://trac.osgeo.org/geos ...

  10. 正确清理binlog日志

    摘要: MySQL中的binlog日志记录了数据库中数据的变动,便于对数据的基于时间点和基于位置的恢复,但是binlog也会日渐增大,占用很大的磁盘空间,因此,要对binlog使用正确安全的方法清理掉 ...