来自蒟蒻 \(Hero \_of \_Someone\) 的 \(LCT\) 学习笔记
$
$
有一个很好的做法是 \(spfa\) ,但是我们不聊 \(spfa\) , 来聊 \(LCT\)
\(LCT\) 做法跟 \(spfa\) 的做法其实有点像,
先将所有的边按 \(a\) 的值从小到大排, 再以 \(b\) 的值为边权来动态的维护最小生成树,
答案即为 当前插入边的 \(a\) 值加上最小生成树中的最大边权 的最小值
$
$
此外, 用 \(LCT\) 维护 \(MST\) , 就是在添边的时候如果遇到环且环上最长的边边权大于当前边, 就将最大边 \(cut\) , 再将当前边添入

//made by Hero_of_Someone
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define N (50040)
#define M (100010)
#define RG register
using namespace std;
inline int gi(){ RG int x=0,q=1; RG char ch=getchar(); while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
  if(ch=='-') q=-1,ch=getchar(); while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=getchar(); return q*x; }
void File(){freopen(".in","r",stdin);freopen(".out","w",stdout);}

int n,m;
struct Edge{
  int u,v,a,b;
  bool operator<(const Edge& x)const{ return a<x.a; }
}e[M];

inline void init(){
  n=gi(),m=gi();
  for(RG int i=1;i<=m;i++){
    e[i].u=gi(),e[i].v=gi();
    e[i].a=gi(),e[i].b=gi();
  }
  sort(e+1,e+m+1);
}

int Max[N+M],val[N+M];
int ch[N+M][2],fa[N+M],rev[N+M];

inline void cur(int x,int y){ val[x]=Max[x]=y; }

inline bool cnm(int x,int y){ return e[x].b<e[y].b; }

inline void up(int x){
  Max[x]=max(Max[ch[x][0]],Max[ch[x][1]],cnm);
  Max[x]=max(Max[x],val[x],cnm);
}

inline void reverse(int x){
  swap(ch[x][0],ch[x][1]);
  rev[x]^=1;
}

inline void down(int x){
  if(!rev[x]) return ;
  reverse(ch[x][0]);
  reverse(ch[x][1]);
  rev[x]=0;
}

inline bool is_root(int x){ return ch[fa[x]][0]!=x && x!=ch[fa[x]][1]; }

inline bool lr(int x){ return x==ch[fa[x]][1]; }

inline void rotate(int x){
  RG int y=fa[x],z=fa[y],k=lr(x);
  if(!is_root(y)) ch[z][lr(y)]=x;
  fa[x]=z; fa[ch[x][k^1]]=y; fa[y]=x;
  ch[y][k]=ch[x][k^1]; ch[x][k^1]=y;
  up(y); up(x);
}

int st[N+M];
inline void splay(int x){
  RG int y=x,top=0;
  while(1){
    st[++top]=y;
    if(is_root(y)) break;
    y=fa[y];
  }
  for(RG int i=top;i;i--) down(st[i]);
  while(!is_root(x)){
    if(!is_root(fa[x])) rotate(lr(x)^lr(fa[x])?x:fa[x]);
    rotate(x);
  }
}

inline void access(int x){
  RG int y=0;
  while(x){ splay(x);
    ch[x][1]=y; fa[y]=x;
    up(x); y=x; x=fa[x];
  }
}

inline void make_root(int x){
  access(x); splay(x); reverse(x);
}

inline int find(int x){
  while(fa[x]) x=fa[x];
  return x;
}

inline void link(int x,int y){
  if(find(x)==find(y)) return ;
  make_root(x); fa[x]=y;
}

inline void cut(int x,int y){
  make_root(x); access(y); splay(y);
  if(ch[y][0]==x) ch[y][0]=0,fa[x]=0,up(y);
}

inline int query(int x,int y){
  make_root(x); access(y); splay(y);
  return Max[y];
}

inline void Insert(int id){
  RG int x=e[id].u,y=e[id].v;
  if(x==y) return ;
  if(find(x)==find(y)){
    RG int tmp=query(x,y);
    if(e[tmp].b<=e[id].b) return ;
    cut(n+tmp,e[tmp].u);
    cut(n+tmp,e[tmp].v);
  }
  cur(n+id,id);
  link(x,n+id);
  link(y,n+id);
}

inline void work(){
  RG int ans=1<<30;
  for(RG int i=1;i<=m;i++){
    Insert(i);
    if(find(1)!=find(n)) continue;
    ans=min(ans,e[i].a+e[query(1,n)].b);
  }
  if(ans==1<<30) ans=-1;
  printf("%d\n",ans);
}

int main(){ init(); work(); return 0; }

沉迷Link-Cut tree无法自拔之:[BZOJ3669][Noi2014] 魔法森林的更多相关文章

  1. bzoj3669: [Noi2014]魔法森林 lct版

    先上题目 bzoj3669: [Noi2014]魔法森林 这道题首先每一条边都有一个a,b 我们按a从小到大排序 每次将一条路劲入队 当然这道题权在边上 所以我们将边化为点去连接他的两个端点 当然某两 ...

  2. [bzoj3669][Noi2014]魔法森林_LCT_并查集

    魔法森林 bzoj-3669 Noi-2014 题目大意:说不明白题意系列++……题目链接 注释:略. 想法:如果只有1个参量的话spfa.dij什么的都上来了. 两个参量的话我们考虑,想将所有的边按 ...

  3. BZOJ3669[Noi2014]魔法森林——kruskal+LCT

    题目描述 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节点1,隐士则住 ...

  4. BZOJ3669: [Noi2014]魔法森林(瓶颈生成树 LCT)

    Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 3558  Solved: 2283[Submit][Status][Discuss] Descript ...

  5. BZOJ3669 [Noi2014]魔法森林(SPFA+动态加边)

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  6. bzoj3669[Noi2014]魔法森林

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  7. bzoj3669: [Noi2014]魔法森林 lct

    记得去年模拟赛的时候好像YY出二分答案枚举a,b的暴力,过了55欸 然后看正解,为了将两维变成一维,将a排序,模拟Kruskal的加边过程,同时维护1到n的最大值,加入一条边e(u,v,a,b)时有以 ...

  8. BZOJ3669 NOI2014魔法森林

    按a从小到大排序,然后按b建图. 每次只需要找1~n中最大的b加当前的a计算答案即可. 这里还有一个小操作就是化边为点,把一条边的边权看做一个点的点权然后多连两条边. By:大奕哥 #include& ...

  9. [bzoj3669][Noi2014]魔法森林——lct

    Brief description 给定一个无向图,求从1到n的一条路径使得这条路径上最大的a和b最小. Algorithm Design 以下内容选自某HN神犇的blog 双瓶颈的最小生成树的感觉, ...

随机推荐

  1. [Oracle]数据库的Control File 取Dump后的样例

    [Oracle]数据库的Control File 取Dump后的样例: 片段截取-------------------------------(size = 40, compat size = 40, ...

  2. STM32串口打印输出乱码的解决办法

    前言 最近在试用uFUN开发板,下载配套的Demo程序,串口数据输出正常,当使用另一个模板工程,调用串口printf调试功能时,输出的却是乱码,最后发现是外部晶振频率不一样.很多STM32开发板都是使 ...

  3. 从源码的角度看 React JS 中批量更新 State 的策略(下)

    这篇文章我们继续从源码的角度学习 React JS 中的批量更新 State 的策略,供我们继续深入学习研究 React 之用. 前置文章列表 深入理解 React JS 中的 setState 从源 ...

  4. Nginx 403 Forbidden 解决方案 史上最靠谱

    原因 1. SELinux为开启状态(enabled) 查看SELinux的状态 sestatus 如果不是 disables , 需要 vi /etc/selinux/config 将以前的 SEL ...

  5. Linux下DNS简单部署(主从域名服务器)

    一.DNS简介DNS(Domain Name System),域名系统,因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串.通 ...

  6. D. Bicolorings

    传送门 [http://codeforces.com/contest/1051/problem/D] 题意 相当于有个2列n行得棋盘,棋盘上的格子只能是黑或者白,问你联通块为k得方案数有多少,结果对 ...

  7. [BUAA-SE-2018]结对作业测试报告

    目录 1. 测试方式 2. 评分规则 2.1 测试点组成 2.2 性能测试的分级 2.3 重新提交的扣分策略 3. 评测结果 3.1 罗老师班 3.2 任老师班 3.3 表中数据的说明 4. 测试点下 ...

  8. Linux内核第二节

    作者:武西垚 深入理解函数调用堆栈 堆栈是C语言程序运行时必须的一个记录调用路径和参数的空间 堆栈的作用 函数调用框架 传递参数 保存返回地址 提供局部变量空间 堆栈相关的寄存器 esp,堆栈指针,指 ...

  9. 网络:LVS负载均衡原理

    LB集群的架构和原理很简单,就是当用户的请求过来时,会直接分发到Director Server上,然后它把用户的请求根据设置好的调度算法,智能均衡地分发到后端真正服务器(real server)上.为 ...

  10. git心得与总结

    任何文件在Git库中都有四种状态:未跟踪状态untracked.跟踪状态tracked(未修改状态unmodified.已修改状态modified.暂存状态staged),由于文件的上述四种状态,在使 ...