洛谷题目传送门

疯狂%%%几个月前就秒了此题的Tyher巨佬

借着这题总结一下决策单调性优化DP吧。蒟蒻觉得用数形结合的思想能够轻松地理解它。

首先,题目要我们求所有的\(p_i\),那么把式子变一下

\[p_i\ge a_j-a_i+\sqrt{|i-j|}
\]

\[p_i=\max\limits_{j=1}^n\{a_j+\sqrt{|i-j|}\}-a_i
\]

绝对值看着很不爽,我们把它拆开

\[p_i=\max(\max_{j=1}^i\{a_j+\sqrt{i-j}\},\max_{j=i}^n\{a_j+\sqrt{j-i}\})-a_i
\]

单独看前一部分

\[p_i=\max_{j=1}^i\{a_j+\sqrt{i-j}\}-a_i
\]

很明显是个要用决策单调性优化的式子。把序列翻转以后,后一部分的算法和前面是一样的,所以只讨论前一部分了。

对于每个\(j\),把\(a_j+\sqrt{i-j}\)看成关于\(i\)的函数\(f_j\)。我们要做的就是在所有\(j\leq i\)的函数中找到最值。比如样例:

观察发现,真正有用的函数只有最上面那个!然而实际情况比这个稍复杂些。sqrt的增速是递减的,因此可能存在一个\(j\)比较小的函数,在某一时刻被\(j\)比较大的函数反超。我们大概需要维护这样的若干个函数:

我们用队列实现决策二分栈(不懂的可以参考一下蒟蒻的blog),按\(j\)从小到大依次维护这些函数。显然,对于其中任意两个相邻的函数\(f_t,f_{t+1}\),它们都有一个临界值\(k_{t,t+1}\)。显然序列中的\(k_{1,2},k_{2,3}...\)也要严格递增。否则,如果\(k_{t,t+1}\ge k_{t+1,t+2}\),可以想象\(f_{t+1}\)根本没有用。

for一遍\(i\),我们尝试着把\(f_i\)加入队列。这时候为了保证\(k\)递增,设队尾决策为\(t\),我们判断,如果\(k_{t-1,t}\ge k_{t,i}\)(此时会有\(f_t(k_{t-1,t})\le f_i(k_{t-1,t})\)),那么\(t\)没用,出队。

该出去的都出去后,\(i\)就可以加入队尾了。这时候可以来求\(p_i\)了。我们检查一下队首决策\(h\),如果\(t_{h,h+1}\le i\),说明\(h\)的巅峰时刻已经过去,出队。最后队首就是所有函数中的最大值。

貌似并没有用到什么三元组啊qwq

update:感谢孤独·粲泽的指正,二分上下界确实该调调

不过还是没有用到什么三元组啊qwq,蒟蒻之前都把临界值\(k\)存下了,直接用就可以啦

#include<bits/stdc++.h>
#define RG register
#define R RG int
#define G if(++ip==iend)fread(ip=buf,1,N,stdin)
#define calc(i,j) a[j]+sq[i-j]//计算函数值
using namespace std;
const int N=5e5+9;
char buf[N],*iend=buf+N,*ip=iend-1;
int n,a[N],q[N],k[N];
double p[N],sq[N];
inline int in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
inline void chkmx(RG double&x,RG double y){
if(x<y)x=y;
}
inline int bound(R x,R y){//二分临界值k
R l=y,r=k[x]?k[x]:n,m,ret=r+1;//控制二分上下界
while(l<=r){
m=(l+r)>>1;
if(calc(m,x)<=calc(m,y))
ret=m,r=m-1;
else l=m+1;
}
return ret;
}
void work(){
for(R h=1,t=0,i=1;i<=n;++i){
while(h<t&&calc(k[t-1],q[t])<calc(k[t-1],i))--t;//维护k单调
k[t]=bound(q[t],i);q[++t]=i;
while(h<t&&k[h]<=i)++h;//将已经不优的决策出队
chkmx(p[i],calc(i,q[h]));//因为做两遍所以取max
}
}
int main(){
n=in();
R i,j;
for(i=1;i<=n;++i)
a[i]=in(),sq[i]=sqrt(i);
work();
for(i=1,j=n;i<j;++i,--j)//序列翻转
swap(a[i],a[j]),swap(p[i],p[j]);
work();
for(R i=n;i;--i)//翻转过了所以要倒着输出
printf("%d\n",max((int)ceil(p[i])-a[i],0));
return 0;
}

洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)的更多相关文章

  1. 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)

    题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...

  2. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  3. 【洛谷3515】[POI2011] Lightning Conductor(决策单调性)

    点此看题面 大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\). 证明单调性 考虑到\(\sqrt ...

  4. BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】

    题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...

  5. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

  6. BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)

    题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...

  7. bzoj 2216: [Poi2011]Lightning Conductor【决策单调性dp+分治】

    参考:https://blog.csdn.net/clove_unique/article/details/57405845 死活不过样例看了题解才发现要用double.... \[ a_j \leq ...

  8. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  9. P3515 [POI2011]Lightning Conductor

    首先进行一步转化 $a_j \leq a_i + q - sqrt(abs(i - j))$ $a_i + q \geq a_j + sqrt(abs(i-j))$ 即 $q = max (a_j + ...

随机推荐

  1. BZOJ3817 清华集训2014 Sum 类欧几里得

    传送门 令\(\sqrt r = x\) 考虑将\(-1^{\lfloor d \sqrt r \rfloor}\)魔改一下 它等于\(1-2 \times (\lfloor dx \rfloor \ ...

  2. 【转】单KEY业务,数据库水平切分架构实践

    本文将以“用户中心”为例,介绍“单KEY”类业务,随着数据量的逐步增大,数据库性能显著降低,数据库水平切分相关的架构实践: 如何来实施水平切分 水平切分后常见的问题 典型问题的优化思路及实践 一.用户 ...

  3. zuul简单使用

    zuul路由的几个配置参数1.静态路由 zuul: routes: myroute1: path: /mypath/** url: http://localhost:8080 (注意这里url要htt ...

  4. EXPERT FOR SQL SERVER诊断系列--索引

    概述   索引设计是数据库设计中比较重要的一个环节,对数据库的性能起着至关重要的作用,但是索引的设计却又不是那么容易的事情,性能也不是那么轻易就获取到的,很多的技术人员因为不恰当的创建索引,最后使得其 ...

  5. django通用权限控制框架

    在web项目中根据不同的用户肯定会限制其不同的权限,利用以下模块可以满足日常几乎所有的权限控制 permission_hook.py  # 自定义权限控制,必须返回True/false  ,True表 ...

  6. Dell BOSS 卡是什么

    全名: Boot Optimized Storage Solution 针对 M.2 接口的 SSD,主板上必须设计接口进行适配. 设计一款主板对于硬件厂商来说是有成本的,其中包括 主板设计成本 产品 ...

  7. Linux下防御DDOS攻击的操作梳理

    DDOS的全称是Distributed Denial of Service,即"分布式拒绝服务攻击",是指击者利用大量“肉鸡”对攻击目标发动大量的正常或非正常请求.耗尽目标主机资源 ...

  8. Linux内核分析第二周:操作系统是如何工作的

    第一讲 函数调用堆栈 计算机是如何工作的? (总结)——三个法宝 1,存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: 2,函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的时候堆 ...

  9. format()函数用法

    基本语法是通过 {} 和 : 来代替以前的 % . format 函数可以接受不限个参数,位置可以不按顺序. 直接打印输出参数: 通过字典设置参数: 通过列表索引设置参数:

  10. EL表达式和JSTL标签库

    expresion language表达式语言 可以输出表达式的值.跟jsp的表达式脚本一样.计算表达式的值后输出.  EL表达式出现的目的是为了使JSP写起来更加简单,让jsp的代码更佳简化. 1. ...