LOJ 2664. 「NOI2013」向量内积 解题报告
#2664. 「NOI2013」向量内积
两个 \(d\) 维向量 \(A=[a_1, a_2 ,...,a_d]\) 与 \(B=[b_1 ,b_2 ,...,b_d]\) 的内积为其相对应维度的权值的乘积和,即:
\]
现有 \(n\) 个 \(d\) 维向量 \(x_1, \ldots, x_n\),小喵喵想知道是否存在两个向量的内积为 \(k\) 的倍数。请帮助她解决这个问题。
输入格式
第一行包含 \(3\) 个正整数 \(n,d,k\),分别表示向量的个数、维数以及待检测的倍数。
接下来 \(n\) 行每行有 \(d\) 个非负整数,其中第 \(i\) 行的第 \(j\) 个整数表示向量 \([x_i]\) 的第 \(j\) 维权值 \(x_{i,j}\)。
输出格式
包含两个整数,用空格隔开。
如果存在两个向量 \(x_p,x_q\) 的内积为 \(k\) 的整数倍,则输出两个向量的编号 \(p\) 与 \(q\)(要求 \(p<q\))。如果存在多组这样的向量组合,输出其中任意一组即可。
若不存在这样的向量组合,则输出两个 \(−1\)。
数据范围与提示
测试点编号 | n | d | k | \(x_i\) |
---|---|---|---|---|
\(1\) | \(2\) | \(20\) | \(2\) | \(\le 10\) |
\(2\) | \(5\) | \(20\) | \(2\) | \(\le 10\) |
\(3\) | \(10\) | \(20\) | \(3\) | \(\le 10\) |
\(4\) | \(20\) | \(20\) | \(2\) | \(\le 100\) |
\(5\) | \(50\) | \(20\) | \(3\) | \(\le 100\) |
\(6\) | \(50\) | \(50\) | \(2\) | \(\le 1000\) |
\(7\) | \(50\) | \(50\) | \(3\) | \(\le 3000000\) |
\(8\) | \(80\) | \(80\) | \(2\) | \(\le 2000000\) |
\(9\) | \(100\) | \(100\) | \(3\) | \(\le 3000000\) |
\(10\) | \(500\) | \(100\) | \(3\) | \(\le 3000000\) |
\(11\) | \(1000\) | \(100\) | \(2\) | \(\le 2000000\) |
\(12\) | \(1000\) | \(100\) | \(3\) | \(\le 3000000\) |
\(13\) | \(10000\) | \(100\) | \(2\) | \(< 10\) |
\(14\) | \(10000\) | \(100\) | \(3\) | \(< 10\) |
\(15\) | \(15000\) | \(100\) | \(2\) | \(< 10\) |
\(16\) | \(18000\) | \(100\) | \(2\) | \(< 10\) |
\(17\) | \(20000\) | \(100\) | \(2\) | \(< 10\) |
\(18\) | \(50000\) | \(30\) | \(3\) | \(< 10\) |
\(19\) | \(80000\) | \(30\) | \(3\) | \(< 10\) |
\(20\) | \(100000\) | \(30\) | \(3\) | \(< 10\) |
向量点乘的过程有点像一个行向量和一个列向量相乘,然后我们把原始向量排成一个矩阵\(A\),然后令\(D=A*A^T\)。
那么\(D_{i,j}\)就代表向量\(i\)和向量\(j\)做内积。
突破口在\(\bmod 2\)上。
现在矩阵所有元素在\(\bmod 2\)下
我们设一个\(n\times n\)的全\(1\)矩阵\(E\),然后通过一些随机化的方法比较\(D\)和\(E\)有哪里不相等。
我们可以随机几个\(1\times n\)的向量\(C\),然后判断是否有
\]
并且我们可以判断出哪一行不相等,然后可以暴力枚举与之匹配的另一个。
或者随机一下原始向量的排列顺序。
至于为什么随机次数是常数次,可以从Hash的角度感性理解
然后\(\bmod 3\)也差不多
注意到\(2^2\equiv 1\pmod 3,1^2\equiv 1\pmod 3\),我们把矩阵\(D'_{i,j}=D^2_{i,j}\)搞出来就可以了
把这个式子拆开可以发现我们需要把组成\(A\)的每一个向量搞出\(1\times d^2\)的,即\(A'_{i,(j-1)d+k}=A_{i,j}*A_{i,k}\)
然后和\(2\)是一样的
Code:
#include <cstdio>
#include <cstring>
#include <cctype>
#include <cstdlib>
#include <algorithm>
int read()
{
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
int n,d,k;
namespace beecute
{
int yuy[20010][110],bee[110],dew[20010],c[20010];
void work()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=d;j++)
yuy[i][j]=read()&1;
int Dew=5;
while(Dew--)
{
memset(dew,0,sizeof dew);
memset(bee,0,sizeof bee);
for(int i=1;i<=n;i++) c[i]=rand()&1;
for(int i=1;i<=d;i++)
for(int j=1;j<=n;j++)
if(c[j])
bee[i]=bee[i]+yuy[j][i]&1;
for(int i=1;i<=n;i++)
for(int j=1;j<=d;j++)
dew[i]=(dew[i]+bee[j]*yuy[i][j])&1;
for(int i=1;i<=n;i++)
if(dew[i]!=c[i])
{
for(int j=1;j<=n;j++)
{
int sum=0;
for(int k=1;k<=d;k++)
sum=(sum+yuy[i][k]*yuy[j][k])&1;
if(!sum)
{
if(i<j) printf("%d %d\n",i,j);
else printf("%d %d\n",j,i);
return;
}
}
}
}
puts("-1");
}
}
namespace beelovely
{
int yuy[100010][101],bee[10010],dew[100010],c[100010];
void work()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=d;j++)
yuy[i][j]=read()%3;
for(int i=1;i<=d;i++)
for(int j=1;j<=d;j++)
for(int k=1;k<=n;k++)
(bee[(i-1)*d+j]+=yuy[k][i]*yuy[k][j])%=3;
int Dew=5;
while(Dew--)
{
memset(dew,0,sizeof dew);
memset(bee,0,sizeof bee);
for(int i=1;i<=n;i++) c[i]=rand();
for(int i=1;i<=d;i++)
for(int k=1;k<=n;k++)
if(c[k])
bee[i]=(bee[i]+yuy[k][i]*yuy[k][j])%3;
for(int i=1;i<=n;i++)
for(int j=1;j<=d;j++)
for(int k=1;k<=d;k++)
dew[i]=(dew[i]+bee[(j-1)*d+k]*yuy[p[i]][j]*yuy[p[i]][k])%3;
for(int i=1;i<=n;i++)
if(dew[i]!=c[i])
{
for(int j=1;j<=n;j++)
{
int sum=0;
for(int k=1;k<=d;k++)
sum=(sum+yuy[i][k]*yuy[j][k])&1;
if(!sum)
{
if(i<j) printf("%d %d\n",i,j);
else printf("%d %d\n",j,i);
return;
}
}
}
}
puts("-1");
}
}
int main()
{
n=read(),d=read(),k=read();
if(k==2) beecute::work();
else beelovely::work();
return 0;
}
2019.2.11
LOJ 2664. 「NOI2013」向量内积 解题报告的更多相关文章
- 「SDOI2014」向量集 解题报告
「SDOI2014」向量集 维护一个向量集合,在线支持以下操作: A x y :加入向量 \((x, y)\): Q x y l r:询问第 \(L\) 个到第 \(R\) 个加入的向量与向量 \(( ...
- loj#2665. 「NOI2013」树的计数
目录 题目链接 题解 代码 题目链接 loj#2665. 「NOI2013」树的计数 题解 求树高的期望 对bfs序分层 考虑同时符合dfs和bfs序的树满足什么条件 第一个点要强制分层 对于bfs序 ...
- 「FJOI2016」神秘数 解题报告
「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...
- 「ZJOI2016」大森林 解题报告
「ZJOI2016」大森林 神仙题... 很显然线段树搞不了 考虑离线操作 我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试 显然操作0,1都可以拆成差分的形式,就是加入和删除 因为保证了操 ...
- 「SCOI2016」背单词 解题报告
「SCOI2016」背单词 出题人sb 题意有毒 大概是告诉你,你给一堆n个单词安排顺序 如果当前位置为x 当前单词的后缀没在这堆单词出现过,代价x 这里的后缀是原意,但不算自己,举个例子比如abc的 ...
- 「NOI2015」寿司晚宴 解题报告
「NOI2015」寿司晚宴 这个题思路其实挺自然的,但是我太傻了...最开始想着钦定一些,结果发现假了.. 首先一个比较套路的事情是状压前8个质数,后面的只会在一个数出现一次的再想办法就好. 然后发现 ...
- 「SCOI2015」国旗计划 解题报告
「SCOI2015」国旗计划 蛮有趣的一个题 注意到区间互不交错,那么如果我们已经钦定了一个区间,它选择的下一个区间是唯一的,就是和它有交且右端点在最右边的,这个可以单调队列预处理一下 然后往后面跳拿 ...
- 「JLOI2015」骗我呢 解题报告?
「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstd ...
- 「JLOI2015」城池攻占 解题报告
「JLOI2015」城池攻占 注意到任意两个人的战斗力相对大小的不变的 可以离线的把所有人赛到初始点的堆里 然后做启发式合并就可以了 Code: #include <cstdio> #in ...
随机推荐
- Part 5:Django测试--Django从入门到精通系列教程
该系列教程系个人原创,并完整发布在个人官网刘江的博客和教程 所有转载本文者,需在顶部显著位置注明原作者及www.liujiangblog.com官网地址. 本节将简要介绍Django的自动化测试相关内 ...
- 线上分享-- 基于DDD的.NET开发框架-ABP介绍
前言 为了能够帮助.Net开发者开拓视野,更好的把最新的技术应用到工作中,我在3月底受邀到如鹏网.net训练营直播间为各位学弟学妹们进行ABP框架的直播分享.同时为了让更多的.NET开发者了解ABP框 ...
- 你应该学会的接口调试神器——Postman高级用法
postman这个神器相信大家都用过,程序员作为非专业的测试人员,非常需要这么一款简单轻量级的restful测试工具,但是不知道你是否知道,postman的强大之处不只是测试一下接口,还有其他非常赞的 ...
- DNS之BIND使用小结(Forward转发)
之前详细介绍了DNS及其在linux下的部署过程,今天再说下DNS的BIND高级特性-forwarder转发功能.比如下面一个案例:1)已经在测试环境下部署了两台内网DNS环境,DNS的zone域名为 ...
- vue自定义公共组件components||在vue中,解决修改后的数据不能渲染到dom上的bug
//主页面框架用来嵌入:Main.vue <el-col :span="24" > * { margin: 0; padding: 0; } html { width: ...
- 个人阅读作业 final
前两次阅读作业链接: http://www.cnblogs.com/SteelPillar/p/4027877.html http://www.cnblogs.com/SteelPillar/p/40 ...
- HTML编码规则
<!DOCTYPE html><!-- 为每一个HTML页面的第一行添加标准模式 --> <html lang="en-us"> <!-- ...
- 初识nginx——内存池篇
初识nginx——内存池篇 为了自身使用的方便,Nginx封装了很多有用的数据结构,比如ngx_str_t ,ngx_array_t, ngx_pool_t 等等,对于内存池,nginx设计的十分精炼 ...
- Java 修饰符顺序问题
What is a reasonable order of Java modifiers (abstract, final, public, static, etc.)? http://stackov ...
- Oracle备份恢复简单过程以及中间的坑.
Oracle 冷备: 貌似需要dbca创建一致的oracle instance 服务器配置版本尽量相同,安装路径相同. 关闭Oracle服务 将oracle app 目录下的oradata以及有快速闪 ...