【bzoj3876】 Ahoi2014—支线剧情
http://www.lydsy.com/JudgeOnline/problem.php?id=3876 (题目链接)
题意
给出一张拓扑图,每条边有一个权值,问每次从1号点出发,走遍所有的边所需要的最小花费是多少。
Solution
上下界最小费用可行流。
因为每条边至少要被经过一次,所以每条边有个流量下界1。又因为每个节点都可以作为结束点,那么每个节点都有可能成为汇点,所以每个点都要向源点1连一条容量为无穷费用为0的边。
这样套上上下界网络流的模型,求解费用最小的可行流即可。
细节
边数$n^2$
代码
// bzoj3876
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf (1ll<<30)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
using namespace std; const int maxn=1010;
int cnt=1,n,head[maxn],S,T,ans;
int vis[maxn],dis[maxn],f[maxn],p[maxn]; struct edge {int from,to,next,w,c;}e[maxn*maxn]; void link(int u,int v,int w,int c) {
e[++cnt]=(edge){u,v,head[u],w,c};head[u]=cnt;
e[++cnt]=(edge){v,u,head[v],0,-c};head[v]=cnt;
}
bool SPFA() {
for (int i=S;i<=T;i++) dis[i]=inf;
queue<int> q;q.push(S);dis[S]=0;f[S]=inf;
while (!q.empty()) {
int x=q.front();q.pop();
vis[x]=0;
for (int i=head[x];i;i=e[i].next) if (e[i].w && dis[e[i].to]>dis[x]+e[i].c) {
dis[e[i].to]=dis[x]+e[i].c;
f[e[i].to]=min(f[x],e[i].w);
p[e[i].to]=i;
if (!vis[e[i].to]) q.push(e[i].to),vis[e[i].to]=1;
}
}
if (dis[T]==inf) return 0;
for (int i=p[T];i;i=p[e[i].from]) e[i].w-=f[T],e[i^1].w+=f[T];
ans+=dis[T]*f[T];
return 1;
}
int main() {
scanf("%d",&n);
S=0,T=n+1;
for (int k,i=1;i<=n;i++) {
scanf("%d",&k);
for (int x,y,j=1;j<=k;j++) {
scanf("%d%d",&x,&y);
link(i,x,inf,y);
link(S,x,1,y);
}
link(i,T,k,0);
if (i!=1) link(i,1,inf,0);
}
while (SPFA());
printf("%d",ans);
return 0;
}
【bzoj3876】 Ahoi2014—支线剧情的更多相关文章
- bzoj3876: [Ahoi2014]支线剧情
神犇题解:http://blog.csdn.net/popoqqq/article/details/43024221 题意:给定一个DAG,1为起始点,任意一个点可以直接回到1,每条边有经过代价,求一 ...
- [bzoj3876][AHOI2014]支线剧情——上下界费用流
题目 传送门 题解 建立s和t,然后s向1连下限0上限inf费用0的边,除1外所有节点向t连下限0上限inf费用0的边,对于每条边下限为1上限为inf费用为经过费用,然后我们只有做上下界网络流构出新图 ...
- 【BZOJ3876】[Ahoi2014]支线剧情 有上下界费用流
[BZOJ3876][Ahoi2014]支线剧情 Description [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩 ...
- 【BZOJ-3876】支线剧情 有上下界的网络流(有下界有源有汇最小费用最大流)
3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 821 Solved: 502[Submit][Status ...
- C++之路进阶——bzoj3876(支线剧情)
F.A.Qs Home Discuss ProblemSet Status Ranklist Contest ModifyUser hyxzc Logout 捐赠本站 Notice:由于本OJ建立在 ...
- bzoj 3876 [Ahoi2014]支线剧情(有上下界的最小费用流)
3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 484 Solved: 296[Submit][Status ...
- BZOJ 3876: [Ahoi2014]支线剧情 [上下界费用流]
3876: [Ahoi2014]支线剧情 题意:每次只能从1开始,每条边至少经过一次,有边权,求最小花费 裸上下界费用流...每条边下界为1就行了 注意要加上下界*边权 #include <io ...
- BZOJ 3876: [Ahoi2014]支线剧情 带下界的费用流
3876: [Ahoi2014]支线剧情 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3876 Description [故事背景] 宅 ...
- [Ahoi2014]支线剧情[无源汇有下界最小费用可行流]
3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1538 Solved: 940[Submit][Statu ...
- 【BZOJ3876】 [Ahoi2014]支线剧情
Description [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现 ...
随机推荐
- eclipse取消空格、等号、分号自动录入
默认eclipse中按空格.等号.分号等键时,会将提示框中的文字输入到编辑内容中,但是很多时候我们并不希望录入,可如下设置. 1.打开 Eclipse -> Window -> Perfe ...
- CentOS 7 安装Redis
Linux安装Redis 一.下载并安装 $ wget http://download.redis.io/releases/redis-2.8.17.tar.gz $ tar xzf redis-2. ...
- Linux下部署SSH登录时的二次身份验证环境记录(利用Google Authenticator)
一般来说,使用ssh远程登录服务器,只需要输入账号和密码,显然这种方式不是很安全.为了安全着想,可以使用GoogleAuthenticator(谷歌身份验证器),以便在账号和密码之间再增加一个验证码, ...
- Nginx负载均衡中后端节点服务器健康检查的操作梳理
正常情况下,nginx做反向代理,如果后端节点服务器宕掉的话,nginx默认是不能把这台realserver踢出upstream负载集群的,所以还会有请求转发到后端的这台realserver上面,这样 ...
- Centos下堡垒机Jumpserver V3.0环境部署完整记录(1)-安装篇
由于来源身份不明.越权操作.密码泄露.数据被窃.违规操作等因素都可能会使运营的业务系统面临严重威胁,一旦发生事故,如果不能快速定位事故原因,运维人员往往就会背黑锅.几种常见的运维人员背黑锅场景:1)由 ...
- svg矢量图在flex布局中样式扭曲的问题
问题机型 小米5 华为nova 其他未知的可能机型 问题描述 利用flex 布局的一行中, 左一样式: -webkit-box-flex: 0; flex: 0 1 auto; 左二样式: -webk ...
- 【Beta阶段】第六次Scrum Meeting!
每日任务内容: 本次会议为第六次Scrum Meeting会议~ 由于本次会议项目经理召开时间为9:30,在公寓1楼会客室召开,召开时长约30分钟,探讨了本次取得的重大突破后需要继续开展的工作. 队员 ...
- 【BUAA软件工程】第一次阅读作业
BUAA软件工程 第一次阅读作业 项目 内容 这个作业属于哪个课程? 北航软工 这个作业的要求在哪里? 第一次个人作业 我在这个课程的目标是? 学习高效严谨的软件工程开发过程,建立团队意识 这个作业在 ...
- Linux内核分析第二周:操作系统是如何工作的
第一讲 函数调用堆栈 计算机是如何工作的? (总结)——三个法宝 1,存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: 2,函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的时候堆 ...
- SPRINT四则运算(第二天)
1.小组成员: 李豌湄:master 江丹仪:产品负责人 2.现状: a.已经下载APP分析他们的界面.优缺点和闪光点 b.已改进代码添加功能 3.任务认领: 完成任务的第一个模块: a.下载五个类 ...