BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)
题意
给你一个数 \(n\) 求这样一个函数的值 :
\[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} {i \brace j} 2^j j!
\]\((1 \le n \le 100000)\)
题解
这个题直接划式子 然后 \(NTT\) 就行了qwq
需要知道一个容斥求斯特林数的东西
\[\displaystyle \begin{Bmatrix} n \\ m \end{Bmatrix} = \frac{1}{m!} \sum_{k=0}^m (-1)^k (m-k)^n
\]这个用组合意义去理解 我们考虑把 \(n\) 个物品放进 \(m\) 个盒子里中的方案数就是斯特林数(盒子不区分)
然后我们考虑枚举至少有 \(k\) 个空的盒子的方案数 那么 \(n\) 就可以随便放入剩下的 \((m-k)\) 个盒子中去
这个式子我们划一下 就可以得到一个用来 \(NTT\) 的式子...
拆一下组合数....
\[\displaystyle \begin{Bmatrix} n \\ m \end{Bmatrix} = \frac{1}{m!} \sum _{k=0}^{m} (-1)^k \frac{m!}{k!(m-k)!}(m-k)^n
\]然后再简单整理一下qwq
\[\displaystyle \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k=0}^{m} [\frac{(-1)^k}{k!}][\frac{(m-k)^n}{(m-k)!}]
\]然后这个就是 \(NTT\) 的式子了
对于这道题我们也可以这样做qwq
\]
如果 \(j > i\) 时 \(\begin{Bmatrix} i \\ j \end{Bmatrix}\) 是为 \(0\) 的 (没有方案数) 那么就有
\]
把之前的那个套进来 卷积形式 我们可以将 \(j-k\) 与 \(k\) 互换
\]
不难发现只有一个地方与 \(i\) 有关 那么我们再放进去
\]
然后那个是等比数列 我们用等比数列求和公式 就可以直接处理出来了
\]
右边卷积就可以求出对于每个 \(j\) 的取值咯qwq
注意程序中卷积之前 要特判右边等比数列次数 \(=0,1\) 的答案 一个是 \(1\) 另一个是 \(n+1\)
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std;
inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("4555.in", "r", stdin);
freopen ("4555.out", "w", stdout);
#endif
}
typedef long long ll;
const ll Mod = 998244353;
ll fpm(ll x, int power) {
ll res = 1;
for (; power; power >>= 1, (x *= x) %= Mod)
if (power & 1) (res *= x) %= Mod;
return res;
}
const int N = 1 << 19;
struct Number_Theoretic_Transform {
ll pow3[N], invpow3[N], a[N], b[N];
int n, m, rev[N];
void Init(int n1, int n2, ll A[], ll B[]) {
For (i, 0, n1) a[i] = A[i];
For (i, 0, n2) b[i] = B[i];
m = n1 + n2;
}
void NTT(ll P[], int opt) {
For (i, 0, n - 1) if (i < rev[i]) swap(P[i], P[rev[i]]);
for (int i = 2, p; i <= n; i <<= 1) {
p = (i >> 1);
ll Wi = (opt == 1) ? pow3[i] : invpow3[i];
for (int j = 0; j < n; j += i) {
ll x = 1;
for (int k = 0; k < p; ++ k, (x *= Wi) %= Mod) {
ll u = P[j + k], v = x * P[j + k + p] % Mod;
P[j + k] = (u + v) % Mod;
P[j + k + p] = (u - v + Mod) % Mod;
}
}
}
if (opt == -1) {
ll invn = fpm(n, Mod - 2);
For (i, 0, n - 1) (P[i] *= invn) %= Mod;
}
}
void Mult() {
int cnt = 0; for (n = 1; n <= m; n <<= 1) ++ cnt;
for (int i = 1; i <= n; i <<= 1)
pow3[i] = fpm(3, (Mod - 1) / i), invpow3[i] = fpm(pow3[i], Mod - 2);
For (i, 1, n) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (cnt - 1));
NTT(a, 1); NTT(b, 1);
For (i, 0, n - 1) (a[i] *= b[i]) %= Mod;
NTT(a, -1);
}
} T;
int n;
ll a[N], b[N], fac[N], ifac[N];
void Init(int maxn) {
fac[0] = ifac[0] = 1;
For (i, 1, maxn) fac[i] = fac[i - 1] * i % Mod;
ifac[maxn] = fpm(fac[maxn], Mod - 2);
Fordown (i, maxn - 1, 1) ifac[i] = ifac[i + 1] * (i + 1) % Mod;
}
ll ans = 0;
int main () {
File(); n = read(); Init(n);
For (i, 0, n) {
a[i] = (Mod + ((i & 1) ? -1 : 1) * ifac[i]) % Mod;
if (i > 1) b[i] = (fpm(i, n + 1) - 1) * ifac[i] % Mod * fpm(i - 1, Mod - 2) % Mod;
else if (i == 1) b[i] = n + 1;
else if (i == 0) b[i] = 1;
// printf ("a[%d] = %lld; b[%d] = %lld;\n", i, a[i], i, b[i]);
}
T.Init(n, n, a, b);
T.Mult();
For (i, 0, n)
(ans += T.a[i] * fpm(2, i) % Mod * fac[i]) %= Mod;
printf ("%lld\n", ans);
return 0;
}
BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)的更多相关文章
- bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化
[Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 679 Solved: 534[Submit][S ...
- bzoj 4555 [Tjoi2016&Heoi2016]求和——NTT+第二类斯特林数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\l ...
- BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】
题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...
- 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...
- bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...
- 【BZOJ 4555】[Tjoi2016&Heoi2016]求和 多项式求逆/NTT+第二类斯特林数
出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n ...
- BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)
题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...
- P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)
传送门 首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成\[Ans=\sum_{i=0}^n\sum_{j=0}^nS(i,j)\times 2^j\times j! ...
- 【bzoj4555】[Tjoi2016&Heoi2016]求和(NTT+第二类斯特林数)
传送门 题意: 求 \[ f(n)=\sum_{i=0}^n\sum_{j=0}^i\begin{Bmatrix} i \\ j \end{Bmatrix}2^jj! \] 思路: 直接将第二类斯特林 ...
随机推荐
- SPOJ1557 GSS2 Can you answer these queries II 历史最值线段树
传送门 题意:给出一个长度为$N$的数列,$Q$次询问,每一次询问$[l,r]$之间的最大子段和,相同的数只计算一次.所有数字的绝对值$\leq 10^5$ GSS系列中不板子的大火题,单独拿出来写 ...
- Luogu P2421 [NOI2002]荒岛野人
最近上课时提到的一道扩欧水题.还是很可做的. 我们首先注意到,如果一个数\(s\)是符合要求的,那么那些比它大(or 小)的数不一定符合要求. 因此说,答案没有单调性,因此不能二分. 然后题目中也提到 ...
- Scala学习(七)---包和引入
包和引入 摘要: 在本篇中,你将会了解到Scala中的包和引入语句是如何工作的.相比Java不论是包还是引入都更加符合常规,也更灵活一些.本篇的要点包括: 1. 包也可以像内部类那样嵌套 2. 包路径 ...
- koa2入门(3)mongoose 增删改查
项目地址:https://github.com/caochangkui/demo/tree/koa-mongoose 连接数据库 数据库名字为:koa-mongoose const mongoose ...
- Python-复习-习题-13
复习 dict: dic = {'name':'alex'}增:dic['age'] = 21 存在就覆盖dic.setdefault() 存在什么也不做,没有就增加 删除:pop()按照key删除, ...
- 树的最长链-POJ 1985 树的直径(最长链)+牛客小白月赛6-桃花
求树直径的方法在此转载一下大佬们的分析: 可以随便选择一个点开始进行bfs或者dfs,从而找到离该点最远的那个点(可以证明,离树上任意一点最远的点一定是树的某条直径的两端点之一:树的直径:树上的最长简 ...
- 如何启动Intel VT-X及合理利用搜索
昨天安装Vmware的时候不幸遇到了Vt-X被禁用的麻烦,上网百度了一下才知道要进入Bois进行设置.说起百度就不得不提到模糊搜索这个概念.这个特性的优点和缺点可谓同等突出,有了模糊搜索大家可以在信息 ...
- 《Linux内核分析》第八周:进程的切换和系统的一般执行过程
杨舒雯(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 实验目的: 使用gdb ...
- 阅读<构建之法>10、11、12章
第十章: 典型用户和场景对后面工作有什么帮助吗? 第十一章: 每日构建的目的是什么呢?有没有具体说明? 第十二章: 产品定位人群是否也局限了产品的可拓展性?
- 构建之法--初识Git
该作业来自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2103 GitHub地址:https://github.com/GVic ...