这道题其实是真的数学巨佬才撸的出来的题目了

但如果只知道结论但是不知道推导过程的我感觉证明无望

首先这道题肯定不能直接搞,而且题目明确说明了一些方法的问题

所以就暗示我们直接上矩阵了啦

但是如果直接搞还要高精度,不仅很烦而且绝壁TLE

所以我们引出性质,其中f[x]表示斐波那契数列的第x项:

gcd(f[n],f[m])=f[gcd(n,m)]

具体的超详细的证明戳这里

然后题意相当于对f[gcd(n,m)]取膜1e9,就是最基本的矩阵优化了

关于矩阵优化斐波那契的板子题看这里

关于这题的CODE,因为那天晚上在Linux机子上打的,被强制转码风了,而且Tab还是两个空格

CODE

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=3,mod=1e8;
int n,m;
struct Matrix{
int n,m;
LL a[N][N];
inline void Fb_init(void){
n=m=2; a[1][1]=0; a[1][2]=a[2][1]=a[2][2]=1;
}
inline void cri_init(void){
n=m=2; a[1][1]=a[2][2]=1; a[1][2]=a[2][1]=0;
}
};
inline Matrix mul(Matrix A,Matrix B){
Matrix C; C.n=A.n; C.m=B.m; memset(C.a,0,sizeof(C.a));
for (register int i=1;i<=C.n;++i)
for (register int j=1;j<=C.m;++j)
for (register int k=1;k<=A.m;++k)
C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j])%mod;
return C;
}
inline Matrix quick_pow(Matrix A,int p){
Matrix T; T.cri_init();
while (p){
if (p&1) T=mul(T,A);
A=mul(A,A); p>>=1;
}
return T;
}
inline int gcd(int n,int m){
return m?gcd(m,n%m):n;
}
int main(){
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
scanf("%d%d",&n,&m); n=gcd(n,m);
if (n<=2) { puts("1"); return 0; }
Matrix A; A.Fb_init();
A=quick_pow(A,n-2);
printf("%lld",(A.a[2][1]+A.a[2][2])%mod);
return 0;
}

Luogu P1306 斐波那契公约数的更多相关文章

  1. 【luogu P1306 斐波那契公约数】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1306#sub gcd(f[m],f[n]) = f[gcd(m,n)] #include <iostr ...

  2. 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质

    P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...

  3. 洛谷 P1306 斐波那契公约数

    洛谷 P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? ...

  4. 洛谷 P1306 斐波那契公约数 解题报告

    P1306 斐波那契公约数 题意:求\(Fibonacci\)数列第\(n\)项和第\(m\)项的最大公约数的最后8位. 数据范围:\(1<=n,m<=10^9\) 一些很有趣的性质 引理 ...

  5. 洛谷——P1306 斐波那契公约数

    P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输 ...

  6. 【Luogu】P1306 斐波那契公约数 题解

    原题链接 嗯...很多人应该是冲着这个标题来的 (斐波那契的魅力) 1.分析题面 点开题目,浏览一遍题目,嗯?这么简单?还是蓝题? 再看看数据范围,感受出题人深深的好意... \(n,m \leq 1 ...

  7. P1306 斐波那契公约数

    题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整 ...

  8. 【Luogu】P1306斐波那契公约数(递推)

    题目链接 有个定理叫gcd(f(n),f(m))=f(gcd(n,m)) 所以递推就好了. #include<cstdio> #include<cstdlib> #includ ...

  9. 洛谷P1306 斐波那契公约数

    题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整 ...

随机推荐

  1. 简述 Spring Cloud 是什么1

    很多同学都了解了Spring ,了解了 Spring Boot, 但对于 Spring Cloud 是什么还是比较懵逼的. 本文带你简单的了解下,什么是Spring Cloud. Spring Clo ...

  2. Linux永久修改系统时间

    1.date 查看系统时间 2.hwclock --show 查看硬件的时间 3.hwclock --set --date '2017-08-16 17:17:00' 设置硬件时间为17年8月16日1 ...

  3. Shell脚本应用(if语句的结构)

    1.测试:检测表达式是否成立,成立则返回值为0,否则为非0 方法: 1)test  表达式 2)[ 表达式 ] 2.文件测试: -d:是否为目录 -f:是否为文件 -e:是否存在 -r:是否有读取权限 ...

  4. LInux下(centos7.2)更新 python3.7

    进入超级管理员目录  su root 下载 wget https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz 找到下载的文件解压  tar - ...

  5. vue学习笔记1-基本知识

    1.npm 安装node.js的时候会一起安装npm包管理器,能够解决nodejs代码部署问题,常见使用如下: 允许用户从npm服务器下载别人编写的第三方包到本地应用允许用户从npm服务器下载并安装别 ...

  6. JdbcTemolate类的介绍<一>

    JdbcTemolate类的介绍 JdbcTemplate是Spring JDBC的核心类,封装了常见的JDBC的用法,同时尽量避免常见的错误.该类简化JDBC的操作,我们只需要书写提供SQL的代码和 ...

  7. 理解LSTM

    本文基于Understanding-LSTMs进行概括整理,对LSTM进行一个简单的介绍 什么是LSTM LSTM(Long Short Term Memory networks)可以解决传统RNN的 ...

  8. css实现不定高度的元素垂直居中问题

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  9. WebService基础入门 CXF(WS + RS)

    一.基本介绍 Web Services是一个软件接口,它描述了一组可以在网络上通过标准化的 XML 消息传递访问的操作.它使用基于 XML 语言的协议来描述要执行的操作或者要与另一个 Web 服务交换 ...

  10. Web 前端怎样入门?(转)

    转自知乎https://www.zhihu.com/question/32314049/answer/100898227