0. 时间复杂度

接触到算法的小伙伴们都会知道时间复杂度(Time Complexity)的概念,这里先放出(渐进)时间复杂度的定义:

假设问题规模是\(n\),算法中基本操作重复执行的次数是\(n\)的某个函数,用\(T(n)\)表示,若有某个辅助函数\(f(n)\),使得

\[\lim_{n\rightarrow \infty}{T(n)/f(n)} = c
\]

其中\(c\)为不等于零的常数,则称\(f(n)\)是\(T(n)\)的同数量级函数。记作\(T(n)=O(f(n))\),称\(O(f(n))\) 为算法的渐进时间复杂度,简称时间复杂度。

常见的时间复杂度有(表格越靠后表示越不理想):

复杂度 名称
\(O(1)\) 常数阶
\(O(\log n)\) 对数阶
\(O(n)\) 线性阶
\(O(n\log n)\) 线性对数阶
\(O(n^2)\) 平方阶
\(O(n^3)\) 立方阶
\(O(n^k)\) \(k\)次方阶(\(k>3\)且\(k\in Z\))
\(O(2^n)\) 指数阶

例如,我们熟悉的插入排序(Insertion Sort)算法的时间复杂度是\(O(n^2)\),而合并排序(Merge Sort)算法的时间复杂度是\(O(n\log n)\)

那么这些复杂度之间的差距是怎么样的呢?有些小伙伴会疑问,自己写的算法虽然是高复杂度但是也用的好好的,为什么要纠结于这个概念呢?

我们不妨来探索一下今天的问题:\(O(n^2)\)和\(O(n\log n)\)差距有多大?

1. \(O(n^2)\)和\(O(n\log n)\)差距有多大?

我们知道,插入排序(Insertion Sort)算法的时间复杂度是\(O(n^2)\),而合并排序(Merge Sort)算法的时间复杂度是\(O(n\log n)\),即当排序\(n\)个对象时,插入排序算法需要用时大约\(c_1n^2\),而合并排序算法需要用时大约\(c_2n\log{n}\),其中\(c_1\)和\(c_2\)都是正常数且与\(n\)无关,且往往\(c_1<c_2\)。

稍微利用初等数学的知识,可以知道,对于任何\(n>=2\),比较约\(c_1n^2\)和\(c_2n\log{n}\)即比较\(c_1n\)和\(c_2\log{n}\)。由于我们已知

\[c_1<c_2
\]

以及

\[\log{n} < n
\]

想要比较这两个值的大小,直观的看法就是比较两个不等式谁的差别“更多”。可以证明,当无论\(c_1\)和\(c_2\)差别多么显著,总存在充分大的\(N\)使得当\(n>N\)时,\(c_1n>c_2\log{n}\)。

Introduction to Algorithms中,作者举了一个很有趣的例子:

假设针对同一排序问题,用一台很快的电脑A运行插入排序,用一台很慢的电脑B运行合并排序,问题规模\(n=10^7\):

两台电脑的差别如下,为了使A比B优势显著,作者假设电脑A性能比B强1000倍,并且B运行的代码更低效、且编译器更差(导致需要运行更多的指令):

电脑A 电脑B
每秒运行指令数 \(10^{10}\) \(10^7\)
需要运行的指令总数 \(2n^2\) \(50n\log n\)

这样,A完成任务需要:

\[\frac{2\cdot(10^7)^2}{10^{10}} = 20,000\quad seconds
\]

而B完成任务需要:

\[\frac{50\cdot 10^7\log 10^7}{10^{7}} \approx 1,163 \quad seconds
\]

可以看到,在这样的大规模的问题下,即便B计算机与A差距巨大,最终也只用了20分钟左右就完成排序,而A却需要5.5小时来完成。时间复杂度的差距可见一斑。

3. 总结

算法时间复杂度的量级差异,也许在小规模的问题下,表现差别不大。但是时间复杂度高的算法,对问题规模的变化更加敏感,因而当问题的规模变得很大的时候,靠拥有高阶时间复杂度的算法来求解并不可靠!

(更新)我从网络上找到了一个直观的各个阶的复杂度的对比,大家不妨参考一下:

# 喜欢就点个赞、关注支持一下吧!

参考:

Thomas H. Cormen, et al., Introduction to Algorithms Part I 1.2

http://www.bigocheatsheet.com

时间复杂度O(n^2)和O(nlog n)差距有多大?的更多相关文章

  1. 如何快速求解第一类斯特林数--nlog^2n + nlogn

    目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...

  2. 【转】Java学习—什么是时间复杂度

    [原文]https://www.toutiao.com/i6593144782992704007/ 转载:程序员小灰 时间复杂度的意义 究竟什么是时间复杂度呢?让我们来想象一个场景: 某一天,小灰和大 ...

  3. 日常分享:关于时间复杂度和空间复杂度的一些优化心得分享(C#)

    前言 今天分享一下日常工作中遇到的性能问题和解决方案,比较零碎,后续会持续更新(运行环境为.net core 3.1) 本次分享的案例都是由实际生产而来,经过简化后作为举例 Part 1(作为简单数据 ...

  4. careercup-高等难度 18.6

    18.6 设计一个算法,给定10亿个数字,找出最小的100万个数字.假定计算机内存足以容纳全部10亿个数字. 解法: 方法1:排序 按升序排序所有的元素,然后取出前100万个数,时间复杂度为O(nlo ...

  5. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

  6. 最小k个数

    题目 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 思考 方法0: 直接排序然后返回前k个,最好的时间复杂度为 O(nlo ...

  7. 排序算法——(2)Python实现十大常用排序算法

    上期为大家讲解了排序算法常见的几个概念: 相关性:排序时是否需要比较元素 稳定性:相同元素排序后是否可能打乱 时间空间复杂度:随着元素增加时间和空间随之变化的函数 如果有遗忘的同学可以看排序算法——( ...

  8. 20172328 2018-2019《Java软件结构与数据结构》第五周学习总结

    20172328 2018-2019<Java软件结构与数据结构>第五周学习总结 概述 Generalization 本周学习了第九章:排序与查找,主要包括线性查找和二分查找算法和几种排序 ...

  9. 超详细的HashMap解析(jdk1.8)

    目录 一.预备知识 时间复杂度 基本数据结构 基本位运算 二.HashMap实现原理 结构 速度 三.源码分析 基本常量 基本成员变量 构造方法 put方法 remove 四.日常使用注意事项 五.总 ...

随机推荐

  1. centos6分辨率设置

    问题描述 centos 6.9最小化安装后, 分辨率会很大, 当然也可以最小化VM虚拟机, 但是有强迫症的朋友可以设置一下. 解决方法 打开/etc/grub.conf配置文件, 在kernel 的最 ...

  2. linux系统运行状态检查

    目录 1 CPU状态检查 1.1 运行时间 1.2 CPU占用率 1.3 单核占用率 2 内存状态检查 2.1 内存占用率 2.2 交换分区占用率 3 磁盘状态检查 3.1 系统磁盘容量占用率 3.2 ...

  3. 移除元素的golang实现

    给定一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成 ...

  4. Oracle11g链接提示未“在本地计算机注册“OraOLEDB.Oracle”解决方法

    当 用,Provider=OraOLEDB.Oracle方式访问ORACLE11g数据库.出现 未在本地计算机注册“OraOLEDB.Oracle”提供程序提示.解决方案如下: 客户端环境:Win7 ...

  5. 左侧多级菜单,高亮显示js

    左侧多级菜单,如果本页面是当前栏目,则左侧菜单高亮显示 <ul class="nav navbar-stacked" id="navs"> {ded ...

  6. metamask源码学习-contentscript.js

    When a new site is visited, the WebExtension creates a new ContentScript in that page's context, whi ...

  7. oracle12C 创建PDB

    1.根据数据库现有模板创建PDB CREATE PLUGGABLE DATABASE ssptrad ADMIN USER sspIDENTIFIED BY oracle roles=(dba) fi ...

  8. mysql数据类型介绍(含text,longtext,mediumtext说明)

    转自http://m.blog.csdn.net/sipsir/article/details/12343581 转载,文章原连接已经失效,百度快照找到的. MySQL支持大量的列类型,它可以被分为3 ...

  9. 代码编辑器monaco-editor之基础使用

    1.下载安装monaco-editor npm install monaco-editor 我的安装目录在 C://Windows//SystemApps//Microsoft.MicrosoftEd ...

  10. http/2 多路复用技术

    虽然 HTTP 1.1 默认启用长TCP连接,但所有的请求-响应都是按序进行的(这里的长连接可理解成半双工协议.即便是HTTP 1.1引入了管道机制,也是如此).复用同一个TCP连接期间,即便是通过管 ...