题目描述

Byteasar has designed a supercomputer of novel architecture. It may comprise of many (identical) processing units. Each processing unit can execute a single instruction per time unit.
The programs for this computer are not sequential but rather have a tree structure. Each instruction may have zero, one, or multiple subsequent instructions, for which it is the parent instruction.
The instructions of the program can be executed in parallel on all available processing units. Moreover, they can be executed in many orders: the only restriction is that an instruction cannot be executed unless its parent instruction has been executed before. For example, as many subsequent instructions of an instruction that has been executed already can be executed in parallel as there are processing units.
Byteasar has a certain program to run. Since he likes utilizing his resources optimally, he is wondering how the number of processing units would affect the running time. He asks you to determine, for a given program and number of processing units, the minimum execution time of the program on a supercomputer with this many processing units.
给定一棵N个节点的有根树,根节点为1。
Q次询问,每次给定一个K,用最少的操作次数遍历完整棵树,输出最少操作次数。
每次操作可以选择访问不超过K个未访问的点,且这些点的父亲必须在之前被访问过。

输入

In the first line of standard input, there are two integers, N and Q (1<=N,Q<=1 000 000), separated by a single space, that specify the number of instructions in Byteasar's program and the number of running time queries (for different numbers of processing units).
In the second line of input, there is a sequence of Q integers, K1,k2,…Kq (1<=Ki<=1 000 000), separated by single spaces: Ki is the number of processing units in Byteasar's i-th query.
In the third and last input line, there is a sequence of N-1 integers, A2,A2…An (1<=Ai<i), separated by single spaces: Ai specifies the number of the parent instruction of the instruction number i. The instructions are numbered with successive integers from 1 to N, where the instruction no. 1 is the first instruction of the program.

输出

Your program should print one line consisting of Q integers, separated by single spaces, to the standard output: the i-th of these numbers should specify the minimum execution time of the program on a supercomputer with Ki processing units.

样例输入

20 1
3
1 1 1 3 4 3 2 8 6 9 10 12 12 13 14 11 11 11 11

样例输出

8

提示

1
2
3
4
5
6
7
8
1    
2 3 4
5 6 7
8 10  
9 12  
11 13 14
15 16 17
18 19 20
 
最优情况一定是每次选满k个,但这显然不能实现,因此最优策略就是每次尽可能多的选点且保证下一次也能尽可能多的选点。
那么对于每一次选点,能选子节点就选子节点,而不是选完这一层再选下一层,因为只要不到最底层,选子节点至少不会使下一次能选的点数变小。
当往下选不了了再回来选之前剩下的,这样的话前面一些层每层要选一次,后面的层要用size/k次。
能够证明出来合法的最优解是ans=max{i+i/k},其中i代表深度。
这样求每次询问都是O(n)的显然不行。但可以发现有些i永远不可能成为答案或者如果当前k时不能作为答案之后的k就一定不会成为答案。
因此可以斜率优化成O(n)。只处理出1<=k<=n的k的答案,剩下k>n的答案就是最大深度
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int head[1000010];
int n,Q,x;
int tot;
int k[1000010];
int to[1000010];
int next[1000010];
int dep;
int sum[1000010];
int c[1000010];
int q[1000010];
int ans[1000010];
int l=1,r;
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
void dfs(int x,int d)
{
dep=max(dep,d);
c[d]++;
for(int i=head[x];i;i=next[i])
{
dfs(to[i],d+1);
}
}
int calc(int x,int y)
{
return x/y+(x%y>0);
}
int main()
{
scanf("%d%d",&n,&Q);
for(int i=1;i<=Q;i++)
{
scanf("%d",&k[i]);
}
for(int i=2;i<=n;i++)
{
scanf("%d",&x);
add(x,i);
}
dfs(1,1);
for(int i=dep;i>=0;i--)
{
sum[i]=sum[i+1]+c[i+1];
}
for(int i=dep;i>=0;q[++r]=i--)
{
while(l<r&&1ll*(q[r-1]-q[r])*(sum[i]-sum[q[r]])>=1ll*(q[r]-i)*(sum[q[r]]-sum[q[r-1]]))
{
r--;
}
}
for(int i=n;i>=1;i--)
{
while(l<r&&1ll*i*(q[l]-q[l+1])<=1ll*(sum[q[l+1]]-sum[q[l]]))
{
l++;
}
ans[i]=q[l]+calc(sum[q[l]],i);
}
for(int i=1;i<=Q;i++)
{
k[i]>n?printf("%d",dep):printf("%d",ans[k[i]]);
if(i!=Q)
{
printf(" ");
}
}
}

BZOJ3835[Poi2014]Supercomputer——斜率优化的更多相关文章

  1. BZOJ3835 [Poi2014]Supercomputer 【斜率优化】

    题目链接 BZOJ3835 题解 对于\(k\),设\(s[i]\)为深度大于\(i\)的点数 \[ans = max\{i + \lceil \frac{s[i]}{k}\} \rceil\] 最优 ...

  2. BZOJ3835: [Poi2014]Supercomputer

    Description Byteasar has designed a supercomputer of novel architecture. It may comprise of many (id ...

  3. 洛谷3571 POI2014 SUP-Supercomputer (斜率优化)

    一道神仙好题. 首先看到有多组\(k\),第一反应就是离线. 考虑贪心. 我们每次一定是尽量选择有儿子的节点.以便于我们下一次扩展. 但是对于一个\(k\),每次贪心的复杂度是\(O(n)\) 总复杂 ...

  4. DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)

    前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...

  5. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  6. [斜率优化DP]【学习笔记】【更新中】

    参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  8. 单调队列 && 斜率优化dp 专题

    首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...

  9. 【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP

    第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了 ...

随机推荐

  1. liunx基础知识

    学习Linux系统的重要性应该不用多说,下面我就对Linux的基础知识进行一个全面而又简单的总结.不过建议大家还是装个Linux系统多练习,平时最好只在Linux环境下编程,这样会大有提高. linu ...

  2. ubuntu 14.04 sudo apt-get 简单 安装 ffmpeg

    一种方法是这样的sudo add-apt-repository ppa:kirillshkrogalev/ffmpeg-next sudo apt-get update sudo apt-get in ...

  3. android ActionBarSherlock使用说明

    源代码地址:https://github.com/JakeWharton/ActionBarSherlock 1.添加项目依赖包 2.修改AndroidManifest.xml中的主题(或者继承该主题 ...

  4. 动手动脑(lesson 3)

    一· 答:本质上一样,但在内存分配时有区别.如下图: 二· 程序运行结果截图: 答案截图: 三· 四· 答:构造函数与参数个数不匹配. 五· 运行结果截图: 总结:所有类的变量都默认初始化为null, ...

  5. ThreadGroup其实比ExecutorService更好

    用java做抓取的时候免不了要用到多线程的了,因为要同时抓取多个网站或一条线程抓取一个网站的话实在太慢,而且有时一条线程抓取同一个网站的话也比较浪费CPU资源.要用到多线程的等方面,也就免不了对线程的 ...

  6. STL语法——集合:set 安迪的第一个字典(Andy's First Dictionary,UVa 10815)

    Description Andy, , has a dream - he wants to produce his very own dictionary. This is not an easy t ...

  7. [03] Spring "Hello World"

    0.写在前面的话 本篇以一个简单的示例,描述了Spring通过容器对于Java类的装载和获取.在以下我们可以看到,有一个Java类Coder,我们全程并没有手动调用new来进行实例化,而是从Sprin ...

  8. HNOI2017做题笔记

    HNOI2017 单旋(线段树.set) 手玩旋转操作(忽略手玩过程)可以发现:一次单旋对原树的变化实际上很小. 对于父子关系,单旋最小值会将\(Spaly\)上最小值变成原来根的父亲,将最小值的点右 ...

  9. c#对联合体的封装

    https://blog.csdn.net/u012846041/article/details/37518313 标准C或者C++中均提供关键字定义联合结构,C#中未提供类似的关键字,但仍然可以定义 ...

  10. 将WinForm程序(含多个非托管Dll)合并成一个exe的方法

    原文:将WinForm程序(含多个非托管Dll)合并成一个exe的方法 开发程序的时候经常会引用一些第三方的DLL,然后编译生成的exe文件就不能脱离这些DLL独立运行了. ILMerge能把托管dl ...