共轭函数

共轭函数的定义:

设函数f:Rn→R,定义函数f∗:Rn→R为:

f∗(y)=sup(<y,x>−f(x))  x∈D

此函数称为函数f的共轭函数。即函数yx和函数f(x)之间差值的上确界。

如下图所示:

假设y=2时,yTx的图像是xy那条虚线,而定义式右边的部分是求x等于多少时yTx - f(x)的值最大,在上图中我们可以一眼看出,在“和xy平行且是f(x)切线的那个点”处两函数的差值最大,假设差值是10,于是我们就求出yTx - f(x)的共轭函数的一个点,即f*(2) = 10,就这样把y扩展到这个定义域范围内后就得到了整个共轭函数。

假设有函数f(x) = xTQx/2,其中Q是可逆的对称阵,算它的共轭函数,根据定义就是求:g(x, y) = yTx - xTQx/2 的上确界。

于是将g(x, y)对x求偏导:

g’(x,y) = (yTx)’ - (xTQx/2)’

因为xTQx对x求偏导的结果是2Qx,所以上式继续推导为:

=y - Qx

另偏导等于0,得:

x= Q-1y

因为是求偏导,所以得到的是上确界,于是把上式代入g(x, y)后就得f(x)的共轭函数:

f*(y)= (yTQ-1y)/2

负熵函数: f(x)=xlog(x), x∈R+,f(0)=0,共轭函数 
f∗(y)=supyx−xlog(x), 在y=log(x)+1取最大值,即x=ey−1,因此,f∗(y)=ey−1.

http://blog.csdn.net/raby_gyl/article/details/53178467

Conjugate Function的更多相关文章

  1. Fourier Transform Complex Conjugate Discussion

    FT of function $f(t)$ is to take integration of the product of $f(t)$ and $e^{-j\Omega t}$. By separ ...

  2. 生成式模型之 GAN

    生成对抗网络(Generative Adversarial Networks,GANs),由2014年还在蒙特利尔读博士的Ian Goodfellow引入深度学习领域.2016年,GANs热潮席卷AI ...

  3. f-GAN

    学习总结于国立台湾大学 :李宏毅老师 f-GAN: Training Generative Neural Samplers using Variational Divergence Minimizat ...

  4. HTML5 3D 粒子波浪动画特效DEMO演示

    需要thress.js插件:     http://github.com/mrdoob/three.js // three.js - http://github.com/mrdoob/three.js ...

  5. 通过百度echarts实现数据图表展示功能

    现在我们在工作中,在开发中都会或多或少的用到图表统计数据显示给用户.通过图表可以很直观的,直接的将数据呈现出来.这里我就介绍说一下利用百度开源的echarts图表技术实现的具体功能. 1.对于不太理解 ...

  6. 损失函数(Loss Function) -1

    http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数 ...

  7. The Joys of Conjugate Priors

    The Joys of Conjugate Priors (Warning: this post is a bit technical.) Suppose you are a Bayesian rea ...

  8. machine learning(11) -- classification: advanced optimization 去求cost function最小值的方法

    其它的比gradient descent快, 在某些场合得到广泛应用的求cost function的最小值的方法 when have a large machine learning problem, ...

  9. jsp中出现onclick函数提示Cannot return from outside a function or method

    在使用Myeclipse10部署完项目后,原先不出错的项目,会有红色的叉叉,JSP页面会提示onclick函数错误 Cannot return from outside a function or m ...

随机推荐

  1. 有哪些操作会使用到TempDB;如果TempDB异常变大,可能的原因是什么,该如何处理(转载)

    有哪些操作会使用到TempDB:如果TempDB异常变大,可能的原因是什么,该如何处理:tempdb的用途: 存储专用和全局临时变量,不考虑数据库上下文: 与Order by 子句,游标,Group ...

  2. vue2.0中使用less

    第一部分:Less语言 与上一篇<vue2.0中使用sass>介绍的Sass语言一样,Less语言也是一种CSS的扩展语言,增加了变量.混合(minin).函数等功能,让CSS更易维护.方 ...

  3. electron 开发实时加载

    第一个方式 cnpm install electron-reload --save-dev cnpm install electron-prebuilt --save-dev require('ele ...

  4. CF1153F Serval and Bonus Problem FFT

    CF1153F Serval and Bonus Problem 官方的解法是\(O(n ^ 2)\)的,这里给出一个\(O(n \log n)\)的做法. 首先对于长度为\(l\)的线段,显然它的答 ...

  5. springboot 发送邮件+模板+附件

    package com.example.demo; import org.junit.Test;import org.junit.runner.RunWith;import org.springfra ...

  6. python第二周

    第二周,PYTHON图形绘制 一,计算机技术的演进发展 1946-1981.从第一台计算机的诞生到IBM的PC机的出现,我们称之为”计算机系统结构时代“.————这个时代重点在解决计算能力问题 198 ...

  7. Crackme006 - 全新160个CrackMe学习系列(图文|视频|注册机源码)

    知乎:逆向驿站 原文链接 CrackMe006 | 难度适中适合练手 |160个CrackMe深度解析(图文+视频+注册机源码) crackme006,依然是delphi的,而且没壳子,条线比较清晰, ...

  8. mysql连接数设置操作(Too many connections)及设置md5值的加密密码

    mysql在使用过程中,发现连接数超了~~~~ [root@linux-node1 ~]# mysql -u glance -h 192.168.1.17 -pEnter password: ERRO ...

  9. 查看服务器系统资源(cpu,内容)利用率前几位的进程的方法

    在日常运维工作中,我们经常需要了解服务器上的系统资源的使用情况,要清楚知道一些重要进程所占的资源比例.这就需要熟练掌握下面几个命令的使用: 1)查看占用CPU最高的5个进程 # ps aux | so ...

  10. 雅思听听app

    最近本人呢,正在紧张的备战雅思考试,因为英语基础很弱,尤其是听力,所以老师推荐了雅思听听这个app,说是特别好使,用了一个多月的,总体来说感觉还是很nice的,但是还有一些小毛病,不过这小毛病瑕不掩瑜 ...