688. Knight Probability in Chessboard棋子留在棋盘上的概率
[抄题]:
On an N
xN
chessboard, a knight starts at the r
-th row and c
-th column and attempts to make exactly K
moves. The rows and columns are 0 indexed, so the top-left square is (0, 0)
, and the bottom-right square is (N-1, N-1)
.
A chess knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction.
Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there.
The knight continues moving until it has made exactly K
moves or has moved off the chessboard. Return the probability that the knight remains on the board after it has stopped moving.
Example:
Input: 3, 2, 0, 0
Output: 0.0625
Explanation: There are two moves (to (1,2), (2,1)) that will keep the knight on the board.
From each of those positions, there are also two moves that will keep the knight on the board.
The total probability the knight stays on the board is 0.0625.
[暴力解法]:
时间分析:
空间分析:
[优化后]:
时间分析:
空间分析:
[奇葩输出条件]:
[奇葩corner case]:
[思维问题]:
以为就是数学题算一下就行了。没想到每走一步,棋盘都要变化,所以要用2个dp数组:初始和现在。
[英文数据结构或算法,为什么不用别的数据结构或算法]:
[一句话思路]:
没想到每走一步,棋盘都要变化,所以要用2个dp数组:初始和现在。进行坐标型dp。
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
- ij是新扩展的,row col是原来已有的。所以要用新扩展的+原来已有的。
- 答案要求小数时,初始化数组为double型。
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
没想到每走一步,棋盘都要变化,所以要用2个dp数组:初始和现在。
[复杂度]:Time complexity: O(n2) Space complexity: O(n2)
[算法思想:迭代/递归/分治/贪心]:
[关键模板化代码]:
二维矩阵需要一行行地填:
for (double[] row : dp0) {
Arrays.fill(row, 1);
}
[其他解法]:
[Follow Up]:
[LC给出的题目变变变]:
[代码风格] :
[是否头一次写此类driver funcion的代码] :
[潜台词] :
class Solution {
int[][] directions = {{1, 2}, {1, -2}, {2, - 1}, {2, 1}, {-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}};
public double knightProbability(int N, int K, int r, int c) {
//corner case //initialization: len, dp0[][] and fill with 1
double[][] dp0 = new double[N][N];
for (double[] row : dp0) {
Arrays.fill(row, 1);
} //calculate dp1, give to dp0
for (int l = 0; l < K; l++) {
double[][] dp1 = new double[N][N];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
for (int[] d : directions) {
int row = i + d[0];
int col = j + d[1];
if (valid(row, col, N)) dp1[i][j] += dp0[row][col];
}
}
}
dp0 = dp1;
}
return dp0[r][c] / (Math.pow(8, K));
} public boolean valid(int x, int y, int len) {
if (0 <= x && x < len && 0 <= y && y < len) return true;
return false;
}
}
688. Knight Probability in Chessboard棋子留在棋盘上的概率的更多相关文章
- leetcode 576. Out of Boundary Paths 、688. Knight Probability in Chessboard
576. Out of Boundary Paths 给你一个棋盘,并放一个东西在一个起始位置,上.下.左.右移动,移动n次,一共有多少种可能移出这个棋盘 https://www.cnblogs.co ...
- 【LeetCode】688. Knight Probability in Chessboard 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/knight-pr ...
- LeetCode 688. Knight Probability in Chessboard
原题链接在这里:https://leetcode.com/problems/knight-probability-in-chessboard/description/ 题目: On an NxN ch ...
- 688. Knight Probability in Chessboard
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...
- 【leetcode】688. Knight Probability in Chessboard
题目如下: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...
- LeetCode——688. Knight Probability in Chessboard
一.题目链接:https://leetcode.com/problems/knight-probability-in-chessboard/ 二.题目大意: 给定一个N*N的棋盘和一个初始坐标值(r, ...
- [LeetCode] Knight Probability in Chessboard 棋盘上骑士的可能性
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...
- [Swift]LeetCode688. “马”在棋盘上的概率 | Knight Probability in Chessboard
On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...
- Knight Probability in Chessboard
2018-07-14 09:57:59 问题描述: 问题求解: 本题本质上是个挺模板的题目.本质是一个求最后每个落点的数目,用总的数目来除有所可能生成的可能性.这种计数的问题可以使用动态规划来进行解决 ...
随机推荐
- Java web现在流行用什么框架?
Java是开源的,框架很多,这些框架都能解决特定的问题,提高开发效率.简化我们的代码复杂度,现在除了很多大家通用的一些主流框架外,很多公司针对自己的业务会自定义一些公司内部的框架,当然作为学习者我们首 ...
- Ubuntu 12.04图形界面不能登录问题
问题描述: Ubuntu 12.04进入到登录界面,输入用户名和密码无法登录, 输出密码后又跳回到登录界面, 执行快捷键Ctrl+Alt+F1, 可以进入tty1命令行, 可以root或者普通用 ...
- Intellij中部署Tomcat(详细版本-介绍了部署完之后的详细路径)
https://blog.csdn.net/HughGilbert/article/details/56424137 要点如下: 1. CATALINA_HOME即Tomcat的安装目录 2. CAT ...
- EXCEL统计不重复值的数量
如这一列中,有多少不重复值? 1.可以点击,数据,删除重复项,清除重复值,然后剩下的统计一下即可知道: ===> 2.用公式:=SUMPRODUCT((MATCH(E3:E20,E3 ...
- SpringBoot配置(1) 配置文件application&yml
SpringBoot配置(1) 配置文件application&yml 一.配置文件 1.1 配置文件 SpringBoot使用一个全局的配置文件,配置文件名是固定的. application ...
- linux下误删目录文件后恢复神器extundelete
原文链接:https://blog.51cto.com/wzlinux/2052835 参考:https://blog.csdn.net/cwg_1992/article/details/463100 ...
- python:id与小数据池与编码
一.id与小数据池 id:查的是内存地址 a = 100 b = 100 print(a == b)#比较的数值 print(a is b)#比较的是id print(id(a),id(b))#id相 ...
- vi 使用小结
复制 1,ny 从哪行到哪行的复制,中间用逗号隔开,然后命令y. 黏贴 是在命令模式下直接按p即可 跳到n行: 命令模式直接输入数字即可 剪切:d命令 删除:x命令 跳到行首行尾:直接home或end ...
- C语言 练习题
subString #include <iostream> int subString(char* sSeek, char* sKey) { char* p = sSeek; while( ...
- 实战ELK(3) Kibana安装与简单实用
第一步:下载 https://artifacts.elastic.co/downloads/kibana/kibana-6.5.1-x86_64.rpm 第二步:安装 1.安装 yum install ...