本篇博客中,我们将对一个UCI数据库中的数据集:Breast-Cancer数据集,应用已有的机器学习方法来实现一个分类器。

本文代码链接

数据集概况

数据集的地址为:link

在该页面中,可以进入Data Set Description 来查看数据的说明文档,另外一个连接是Data Folder 查看数据集的下载地址。

这里我们使用的文件是:

  • breast-cancer-wisconsin.data
  • breast-cancer-wisconsin.names

即:

这两个文件,第一个文件(连接)是我们的数据文件,第二个文件(连接)是数据的说明文档。

对于这样的一份数据,我们应该首先阅读说明文档中的内容来对数据有一个基本的了解。

对数据的预处理

我们可以知道文件有11个列,第1个列为id号,第2-10列为特征,11列为标签(2为良性、4为恶性)。具体的特征内容在文档中,但是我们可以不关心医学上的具体意义,这部分在文档中的描述如下:

7. Attribute Information: (class attribute has been moved to last column)

   #  Attribute                     Domain
-- -----------------------------------------
1. Sample code number id number
2. Clump Thickness 1 - 10
3. Uniformity of Cell Size 1 - 10
4. Uniformity of Cell Shape 1 - 10
5. Marginal Adhesion 1 - 10
6. Single Epithelial Cell Size 1 - 10
7. Bare Nuclei 1 - 10
8. Bland Chromatin 1 - 10
9. Normal Nucleoli 1 - 10
10. Mitoses 1 - 10
11. Class: (2 for benign, 4 for malignant)

另外从文档中我们还可以知道一些其他的信息:

  • 数据集中共有699条信息
  • 数据集中有16处缺失值,缺失值使用"?"表示
  • 数据集中良性数据有458条,恶性数据有241条

缺失值处理和分割数据集

因为缺失的数据不多(11条),所以我们暂时先采用丢弃带有“?”的数据,加上前面读取数据、添加表头的操作,代码如下:

# import the packets
import numpy as np
import pandas as pd DATA_PATH = "breast-cancer-wisconsin.data" # create the column names
columnNames = [
'Sample code number',
'Clump Thickness',
'Uniformity of Cell Size',
'Uniformity of Cell Shape',
'Marginal Adhesion',
'Single Epithelial Cell Size',
'Bare Nuclei',
'Bland Chromatin',
'Normal Nucleoli',
'Mitoses',
'Class'
] data = pd.read_csv(DATA_PATH, names = columnNames)
# show the shape of data
print data.shape # use standard missing value to replace "?"
data = data.replace(to_replace = "?", value = np.nan)
# then drop the missing value
data = data.dropna(how = 'any') print data.shape

输出结果为:

(699, 11)
(683, 11)

可以看到,现在数据中带有缺失值的数据都被丢弃掉了。

我们可以通过类似 data['Class'] 的方式来访问特定的属性,如下图:

然后我们会将数据集分割为两部分:训练数据集和测试数据集,使用了train_test_split,这个函数已经自动完成了随机分割的功能,函数文档

然后我们分割数据集:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
data[ columnNames[1:10] ], # features
data[ columnNames[10] ], # labels
test_size = 0.25,
random_state = 33
)

得到的变量为:

  • X_train : 训练数据集的特征
  • X_test :测试数据集的特征
  • y_train :训练数据集的标签
  • y_test :测试数据集的标签

因为是监督学习,所以所有数据都有标签,且认为标签的内容百分之百准确。

应用机器学习模型

应用机器模型前,应该将每个特征的数值转化为均值为0,方差为1的数据,使训练出的模型不会被某些维度过大的值主导。

这里使用的使scikit-learn 中的 StandardScaler 模块,doc链接

from sklearn.preprocessing import StandardScaler

ss = StandardScaler()
X_train = ss.fit_transform(X_train) # fit_transform for train data
X_test = ss.transform(X_test)

然后我们将建立一个机器学习模型, 这里我们使用了Logestic Regression 和 SVM:

# use logestic-regression
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(X_train, y_train)
lr_y = lr.predict(X_test) # use svm
from sklearn.svm import LinearSVC
lsvc = LinearSVC()
lsvc.fit(X_train, y_train)
svm_y = lsvc.predict(X_test)

分类器的效果评估

首先我们用分类器自带的.score方法来对准确性进行打印:


# now we will check the performance of the classifier
from sklearn.metrics import classification_report
# use the classification_report to present result
# `.score` method can be used to test the accuracy
print 'Accuracy of the LogesticRegression: ', lr.score(X_test, y_test)
# print 'Accuracy on the train dataset: ', lr.score(X_train, y_train)
# print 'Accuracy on the predict result (should be 1.0): ', lr.score(X_test, lr_y)
print 'Accuracy of the SVM: ' , lsvc.score(X_test, y_test)

输出为:

Accuracy of the LogesticRegression:  0.953216374269
Accuracy of the SVM: 0.959064327485

除此以外,我们还可以使用classification_report对分类器查看更详细的性能测试结果:

print classification_report(y_test, svm_y, target_names = ['Benign', 'Malignant'])

其结果如下:

             precision    recall  f1-score   support

     Benign       0.96      0.98      0.97       111
Malignant 0.96 0.92 0.94 60 avg / total 0.96 0.96 0.96 171

[机器学习实践] 针对Breast-Cancer数据集的更多相关文章

  1. Python机器学习实践指南pdf (中文版带书签)、原书代码、数据集

    Python机器学习实践指南 目 录 第1章Python机器学习的生态系统 1 1.1 数据科学/机器学习的工作 流程 2 1.1.1 获取 2 1.1.2 检查和探索 2 1.1.3 清理和准备 3 ...

  2. Python机器学习实践与Kaggle实战(转)

    https://mlnote.wordpress.com/2015/12/16/python%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%AE%9E%E8%B7%B5 ...

  3. 机器学习实践:《Python机器学习实践指南》中文PDF+英文PDF+代码

    机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一.<Python机器学习实践指南>结合了机器学习和Python 语言两个热门的领域 ...

  4. 资源|《美团机器学习实践》PDF+思维导图

    今天再给大家推荐一本由美团算法团队出版的<美团机器学习实践>,下载链接见文末. 美团算法团队由数百名优秀算法工程师组成,负责构建美团这个生活服务互联网大平台的"大脑", ...

  5. 《百面机器学习算法工程师带你去面试》高清PDF及epub+《美团机器学习实践》PDF及思维导图

    http://blog.sina.com.cn/s/blog_ecd882db0102yuek.html <百面机器学习算法工程师带你去面试>高清PDF及epub+<美团机器学习实践 ...

  6. Mol Cell Proteomics. | Elevated Hexokinase II Expression Confers Acquired Resistance to 4-Hydroxytamoxifen in Breast Cancer Cells(升高的己糖激酶II表达使得乳腺癌细胞获得对他莫昔芬的抗性)(解读人:黄旭蕾)

    文献名:Elevated Hexokinase II Expression Confers Acquired Resistance to 4-Hydroxytamoxifen in Breast Ca ...

  7. 机器学习实践之K-近邻算法实践学习

    关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月04日 22:54:26所撰写内容(http://blog.csdn.n ...

  8. 机器学习实践之Logistic回归

        关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月17日 19:18:31所撰写内容(http://blog.cs ...

  9. 学习笔记TF067:TensorFlow Serving、Flod、计算加速,机器学习评测体系,公开数据集

    TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型 ...

随机推荐

  1. openssl命令行-证书认证

      命令1: openssl genrsa -out root.key 1024 产生一个root.key的私钥 命令2: openssl req -key root.key -new -out ro ...

  2. C# 事务之SqlTransaction

    private static void Execute(string connectionString) { using (SqlConnection connection = new SqlConn ...

  3. 速成制作rpm包

    FPM 由于很多软件在安装时需要编译,这会浪费不少的时间,为了提升部署效率,于是就想到制作rpm包.通常rpm包的制作是使用rpmbuild命令来制作,但是你需要知道它的语法,比较繁琐.这就用到了FP ...

  4. 统计学习方法:罗杰斯特回归及Tensorflow入门

    作者:桂. 时间:2017-04-21  21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensor ...

  5. python自动化测试应用-第7篇(WEB测试)--Selenium进阶篇

    篇7                            python自动化测试应用-Selenium进阶篇 --lamecho 1.1概要 大家好!我是lamecho(辣么丑),本篇文章将是我们介 ...

  6. PHP array_filter() 函数

    定义和用法 array_filter() 函数用回调函数过滤数组中的元素,如果自定义过滤函数返回 true,则被操作的数组的当前值就会被包含在返回的结果数组中, 并将结果组成一个新的数组.如果原数组是 ...

  7. CSS3 02. 边框、边框圆角、边框阴影、边框图片、渐变、线性渐变、径向渐变、背景、过渡transition、2D转换

    边框圆角 border-radius 每个角可以设置两个值,x值.y值 border-top-left-radius:水平半径 垂直半径 border-radius:水平半径/垂直半径 border- ...

  8. 解决 MySQL 分页数据错乱重复

    前言 一天,小明兴匆匆的在通讯工具上说:这边线上出现了个奇怪的问题,麻烦 DBA 大大鉴定下,执行语句 select xx from table_name wheere xxx order by 字段 ...

  9. SVN提交后自动推送消息到钉钉群

    钉钉设置机器人配置 1.进入配置机器人入口 2.添加机器人 3.测试WebHook请求 本人使用Postman进行测试 4.配置SVN 4.1 配置 Pre-commit hook 设置提交内容必须包 ...

  10. Python实现RNN

    一般的前馈神经网络中, 输出的结果只与当前输入有关与历史状态无关, 而递归神经网络(Recurrent Neural Network, RNN)神经元的历史输出参与下一次预测. 本文中我们将尝试使用R ...