[机器学习实践] 针对Breast-Cancer数据集
本篇博客中,我们将对一个UCI数据库中的数据集:Breast-Cancer数据集,应用已有的机器学习方法来实现一个分类器。
数据集概况
数据集的地址为:link
在该页面中,可以进入Data Set Description 来查看数据的说明文档,另外一个连接是Data Folder 查看数据集的下载地址。
这里我们使用的文件是:
- breast-cancer-wisconsin.data
- breast-cancer-wisconsin.names
即:
这两个文件,第一个文件(连接)是我们的数据文件,第二个文件(连接)是数据的说明文档。
对于这样的一份数据,我们应该首先阅读说明文档中的内容来对数据有一个基本的了解。
对数据的预处理
我们可以知道文件有11个列,第1个列为id号,第2-10列为特征,11列为标签(2为良性、4为恶性)。具体的特征内容在文档中,但是我们可以不关心医学上的具体意义,这部分在文档中的描述如下:
7. Attribute Information: (class attribute has been moved to last column)
# Attribute Domain
-- -----------------------------------------
1. Sample code number id number
2. Clump Thickness 1 - 10
3. Uniformity of Cell Size 1 - 10
4. Uniformity of Cell Shape 1 - 10
5. Marginal Adhesion 1 - 10
6. Single Epithelial Cell Size 1 - 10
7. Bare Nuclei 1 - 10
8. Bland Chromatin 1 - 10
9. Normal Nucleoli 1 - 10
10. Mitoses 1 - 10
11. Class: (2 for benign, 4 for malignant)
另外从文档中我们还可以知道一些其他的信息:
- 数据集中共有699条信息
- 数据集中有16处缺失值,缺失值使用"?"表示
- 数据集中良性数据有458条,恶性数据有241条
缺失值处理和分割数据集
因为缺失的数据不多(11条),所以我们暂时先采用丢弃带有“?”的数据,加上前面读取数据、添加表头的操作,代码如下:
# import the packets
import numpy as np
import pandas as pd
DATA_PATH = "breast-cancer-wisconsin.data"
# create the column names
columnNames = [
'Sample code number',
'Clump Thickness',
'Uniformity of Cell Size',
'Uniformity of Cell Shape',
'Marginal Adhesion',
'Single Epithelial Cell Size',
'Bare Nuclei',
'Bland Chromatin',
'Normal Nucleoli',
'Mitoses',
'Class'
]
data = pd.read_csv(DATA_PATH, names = columnNames)
# show the shape of data
print data.shape
# use standard missing value to replace "?"
data = data.replace(to_replace = "?", value = np.nan)
# then drop the missing value
data = data.dropna(how = 'any')
print data.shape
输出结果为:
(699, 11)
(683, 11)
可以看到,现在数据中带有缺失值的数据都被丢弃掉了。
我们可以通过类似 data['Class']
的方式来访问特定的属性,如下图:
然后我们会将数据集分割为两部分:训练数据集和测试数据集,使用了train_test_split
,这个函数已经自动完成了随机分割的功能,函数文档 。
然后我们分割数据集:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
data[ columnNames[1:10] ], # features
data[ columnNames[10] ], # labels
test_size = 0.25,
random_state = 33
)
得到的变量为:
- X_train : 训练数据集的特征
- X_test :测试数据集的特征
- y_train :训练数据集的标签
- y_test :测试数据集的标签
因为是监督学习,所以所有数据都有标签,且认为标签的内容百分之百准确。
应用机器学习模型
应用机器模型前,应该将每个特征的数值转化为均值为0,方差为1的数据,使训练出的模型不会被某些维度过大的值主导。
这里使用的使scikit-learn
中的 StandardScaler
模块,doc链接。
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
X_train = ss.fit_transform(X_train) # fit_transform for train data
X_test = ss.transform(X_test)
然后我们将建立一个机器学习模型, 这里我们使用了Logestic Regression 和 SVM:
# use logestic-regression
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(X_train, y_train)
lr_y = lr.predict(X_test)
# use svm
from sklearn.svm import LinearSVC
lsvc = LinearSVC()
lsvc.fit(X_train, y_train)
svm_y = lsvc.predict(X_test)
分类器的效果评估
首先我们用分类器自带的.score
方法来对准确性进行打印:
# now we will check the performance of the classifier
from sklearn.metrics import classification_report
# use the classification_report to present result
# `.score` method can be used to test the accuracy
print 'Accuracy of the LogesticRegression: ', lr.score(X_test, y_test)
# print 'Accuracy on the train dataset: ', lr.score(X_train, y_train)
# print 'Accuracy on the predict result (should be 1.0): ', lr.score(X_test, lr_y)
print 'Accuracy of the SVM: ' , lsvc.score(X_test, y_test)
输出为:
Accuracy of the LogesticRegression: 0.953216374269
Accuracy of the SVM: 0.959064327485
除此以外,我们还可以使用classification_report
对分类器查看更详细的性能测试结果:
print classification_report(y_test, svm_y, target_names = ['Benign', 'Malignant'])
其结果如下:
precision recall f1-score support
Benign 0.96 0.98 0.97 111
Malignant 0.96 0.92 0.94 60
avg / total 0.96 0.96 0.96 171
[机器学习实践] 针对Breast-Cancer数据集的更多相关文章
- Python机器学习实践指南pdf (中文版带书签)、原书代码、数据集
Python机器学习实践指南 目 录 第1章Python机器学习的生态系统 1 1.1 数据科学/机器学习的工作 流程 2 1.1.1 获取 2 1.1.2 检查和探索 2 1.1.3 清理和准备 3 ...
- Python机器学习实践与Kaggle实战(转)
https://mlnote.wordpress.com/2015/12/16/python%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%AE%9E%E8%B7%B5 ...
- 机器学习实践:《Python机器学习实践指南》中文PDF+英文PDF+代码
机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一.<Python机器学习实践指南>结合了机器学习和Python 语言两个热门的领域 ...
- 资源|《美团机器学习实践》PDF+思维导图
今天再给大家推荐一本由美团算法团队出版的<美团机器学习实践>,下载链接见文末. 美团算法团队由数百名优秀算法工程师组成,负责构建美团这个生活服务互联网大平台的"大脑", ...
- 《百面机器学习算法工程师带你去面试》高清PDF及epub+《美团机器学习实践》PDF及思维导图
http://blog.sina.com.cn/s/blog_ecd882db0102yuek.html <百面机器学习算法工程师带你去面试>高清PDF及epub+<美团机器学习实践 ...
- Mol Cell Proteomics. | Elevated Hexokinase II Expression Confers Acquired Resistance to 4-Hydroxytamoxifen in Breast Cancer Cells(升高的己糖激酶II表达使得乳腺癌细胞获得对他莫昔芬的抗性)(解读人:黄旭蕾)
文献名:Elevated Hexokinase II Expression Confers Acquired Resistance to 4-Hydroxytamoxifen in Breast Ca ...
- 机器学习实践之K-近邻算法实践学习
关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月04日 22:54:26所撰写内容(http://blog.csdn.n ...
- 机器学习实践之Logistic回归
关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月17日 19:18:31所撰写内容(http://blog.cs ...
- 学习笔记TF067:TensorFlow Serving、Flod、计算加速,机器学习评测体系,公开数据集
TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型 ...
随机推荐
- kafka环境
二.环境搭建 参考:http://kafka.apache.org/documentation.html#quickstartStep 1: 下载Kafkawget http://mirrors.no ...
- Vue 事件驱动和依赖追踪
之前关于 Vue 数据绑定原理的一点分析,最近需要回顾,就顺便发到随笔上了 在之前实现一个自己的Mvvm中,用 setter 来观测model,将界面上所有的 viewModel 绑定到 model ...
- iOS开发 socket, 全局socket
因为项目的要求是全局的socket, 哪里都有可能使用到socket去发消息, 所以我把socket写在了单利里面 项目用的是 pod 'CocoaAsyncSocket' 三方库, 是异步的, ...
- 【转载】static关键字详解
上一篇博客中,因为一个static关键字没有设置好,导致浪费了大量的时间来寻找程序的错误,归根结底,就是大一的时候c语言没有学好. 现在总算知道了,你现在所学的每一个知识点在不就的以后可能及时你的救命 ...
- 解决Javascript大数据列表引起的网页加载慢/卡死问题。
在一些网页应用中,有时会碰到一个超级巨大的列表,成千上万行,这时大部份浏览器解析起来就非常痛苦了(有可能直接卡死). 也许你们会说可以分页或动态加载啊?但是有可能需求不允许分页,动态加载?网络的延迟也 ...
- 【原创】bootstrap框架的学习 第七课 -[bootstrap表格]
Bootstrap 表格 标签 描述 <table> 为表格添加基础样式. <thead> 表格标题行的容器元素(<tr>),用来标识表格列. <tbody& ...
- 随应潮流-基于ABP+Angulsrjs现代化应用软件开发框架(2)-abp说明
前言 上周未发布完<基于ABP+Angulsrjs现代化应用软件开发框架(1)-总体介绍> 文章后,好多朋友问了我一些ABP的问题,并且希望我开源我的项目源码,向朋友们说一下,我项目的源码 ...
- # Android动画笔记
标签: Android开发艺术探索笔记 View动画 帧动画 属性动画 View动画 View动画的作用对象时View,有4种动画效果,分别是平移动画.缩放动画.旋转动画.和透明度动画. 此类动画通常 ...
- crash部分命令用法
Set set [pid | taskp | [-c cpu] | -p] | [crash_variable [setting]] | -v 1.设置要显示的内容,内容一般以进程为单位. Set p ...
- 【lucene系列学习四】使用IKAnalyzer分词器实现敏感词和停用词过滤
Lucene自带的中文分词器SmartChineseAnalyzer不太好扩展,于是我用了IKAnalyzer来进行敏感词和停用词的过滤. 首先,下载IKAnalyzer,我下载了 然后,由于IKAn ...